• Title/Summary/Keyword: tropopause fold

Search Result 2, Processing Time 0.015 seconds

Numerical Simulation of the Effects of Moisture on the Reinforcement of a Tropopause Fold

  • Lee, Hong-Ran;Kim, Kyung-Eak;Lee, Yong-Hee
    • Journal of the Korean earth science society
    • /
    • v.30 no.5
    • /
    • pp.630-645
    • /
    • 2009
  • The tropopause fold event that took place on January 1, 1997 over mid-region on the Korean Peninsula is examined by means of a numerical simulation based on a Mesoscale Model (MM5). The purpose of this paper is to investigate the effects of moisture in reinforcing a tropopause fold linked to an explosive cyclone. Two types of simulations were carried out; 1) simulations for moist conditions in which full physical and dynamic processes are considered and 2) simulations for dry conditions in which cumulus parameterization and cloud microphysics process are excluded. The results of the moist condition simulations demonstrate that the intensity of the central pressure of the cyclone was overestimated compared with the observed values and that the location of the center and the pressure deepening rates (-17 hPa/12 hr) complied with the observed values. The potential vorticity (PV) anomaly on the isentropic surface at 305 K continued to move in a southeast direction on January 1, 1997 and thus created a single tube of tropopause fold covering the northern and the middle area of the Korean Peninsula and reaching the ground surface at 0300 UTC and 0600 UTC. The results of the dry condition simulations show that the tropopause descended to 500 and 670 hPa in 0300 and 0600 UTC, respectively at the same location for the moist condition simulation; however, there was no deep tropopause fold observed. A comparison of the simulated data between the moist and the dry conditions suggests that a deep tropopause fold should happen when there is sufficient moist in the atmosphere and significantly large PV in the lower atmosphere pulls down the upper atmosphere rather than when the tropopause descends itself due to dynamic causes. Thus, it is estimated that moisture in the atmosphere should have played a crucial role in a deep tropopause fold process.

The Role of Fronts on the Vertical Transport of Atmospheric Pollutants (2-D model)

  • Nam, Jae-Cheol
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.65-68
    • /
    • 2003
  • A quantitative study of the amount of air transported between the boundary layer and the free atmosphere is important for understanding air quality and upper tropospheric ozone, which is a greenhouse gas. Frontal systems are known to be an effective mechanism for the vertical transport of pollutants. Numerical experiments have been performed with a simple two-dimensional front model to simulate vertical transport of trace gases within developing cold fronts. Three different trace gases experiments have been done numerically according to the different initial fields of trace gases such as aerosol, ozone and $H_2O_2$. Trace gas field tilts to the east while the front tilts to the west. Aerosol simulation shows that pollutants can be transported out of the boundary to altitudes of about 10 km. The stratospheric ozone is brought downwards in a tropopause fold behind of the frontal surface. The meridional gradient in trace gas ($H_2O_2$) can cause a complicate structure in the trace field by the meridional advection.

  • PDF