The Role of Fronts on the Vertical Transport of Atmospheric Pollutants (2-D model)

  • Published : 2003.11.01

Abstract

A quantitative study of the amount of air transported between the boundary layer and the free atmosphere is important for understanding air quality and upper tropospheric ozone, which is a greenhouse gas. Frontal systems are known to be an effective mechanism for the vertical transport of pollutants. Numerical experiments have been performed with a simple two-dimensional front model to simulate vertical transport of trace gases within developing cold fronts. Three different trace gases experiments have been done numerically according to the different initial fields of trace gases such as aerosol, ozone and $H_2O_2$. Trace gas field tilts to the east while the front tilts to the west. Aerosol simulation shows that pollutants can be transported out of the boundary to altitudes of about 10 km. The stratospheric ozone is brought downwards in a tropopause fold behind of the frontal surface. The meridional gradient in trace gas ($H_2O_2$) can cause a complicate structure in the trace field by the meridional advection.

Keywords