• Title/Summary/Keyword: triple sequence

Search Result 59, Processing Time 0.048 seconds

Complete nucleotide sequence of genome RNA of Daphe virus S and its relationship n the genus Carlavirus (oral)

  • Lee, B.Y.;K.H. Ryu
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.115.2-116
    • /
    • 2003
  • Complete genomic nucleotide sequence of Daphe virus S (DVS), a member of the genus Carlavirus, causing leaf distortion and chlorotic spot disease symptoms in daphne plants, has been determined in this study. The genome of DVS contained six open reading fames coding for long viral replicase, triple gene block, 36 kDa viral coat protein (CP) and 12 kDa from the 5' to 3' ends, which is a typical genome structure of carlaviruses. Two Korean isolates of DVS isolates were 98.1% and 93.6% amino acid identical in the CP and 12kDa, respectively. The CP gene of DVS shares 25.2-55.2% and 42.9-56.1% similarities with that of 19 other carlaviruses at the amino acid and nucleotide levels, respectively. The 3'-proximal 12 kDa gene of DVS shares 20.2-57.8% amino acid identities with that of 18 other members of the genus. The 3' noncoding region of DVS consists of 73 nucleotides with long excluding poly A tract, and shares 69.1-77.1% identities to the known carlaviruses. In the phylogenetic analyses of the two proteins, DVS was closely related to Helenium virus S and Chrysanthemum virus B. This is the first complete sequence information for the DVS, and further confirms the classification of DVS as a distinct species of the genus Carlavirus.

  • PDF

Heteronuclear NMR studies on 44 kDa dimer, syndesmos

  • Kim, Heeyoun;Lee, Inhwan;Han, Jeongmin;Cheong, Hae-kap;Kim, Eunhee;Lee, Weontae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.2
    • /
    • pp.83-87
    • /
    • 2015
  • Syndesmos, which is co-localized with syndecan-4 cytoplasmic domain ($Syn4^{cyto}$) in focal contacts, interacts with various cell adhesion adaptor proteins including $Syn4^{cyto}$ to control cell signaling. Syndesmos consists of 211 amino acids and it exists as a dimer (44kDa) in solution. Recently, we have determined the structure of syndesmos by x-ray crystallography, however, dynamics related to syndecan binding still remain elusive. In this report, we performed NMR experiments to acquire biochemical and structural information of syndesmos. Based on a series of three-dimensional triple resonance experiments on a $^{13}C/^{15}N/^2H$ labeled protein, NMR spectra were obtained with well dispersed and homogeneous NMR data. We present the sequence specific backbone assignment of syndesmos and assigned NMR data with combination structural information can be directly used for the studies on interaction with $Syn4^{cyto}$ and other binding molecules.

Series Active Power Filters to Compensate Harmonics and Reactive Power with the Direct Compensating Voltage Extraction Method in Three-Phase Four-Wire Systems

  • Kim, Jin-Sun;Kim, Young-Seok
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.691-699
    • /
    • 2009
  • This paper presents the analysis of series active power filter for reactive power compensation, load balancing, harmonic elimination, and neutral current eradication in three-phase four-wire power systems. Generally, the three-phase four-wire system is widely employed in distributing electric energy to several office building and manufacturing plants. In such systems, the third harmonic and its 3rd harmonics are termed as triple and zero sequence components that do not cancel each other in the system neutral. Consequently, the triple harmonics add together creating a primary source of excessive neutral current. Regarding this concern, this paper presents a new control algorithm for a series hybrid active system, whereas the control approach it adopts directly influence its compensation characteristics. Hence, the advantage of this control algorithm is the direct extraction of compensation voltage reference without phase transformations and multiplying harmonic current value by gain and the required rating of the series active filter is much smaller than that of a conventional shunt active power filter. In order to show the effectiveness of the proposed control algorithm, experiments have been carried out.

Design of Triple-Error-Correcting Reed-Solomon Decoder using Direct Decoding Method (Reed-Solomon 부호의 직접복호법을 이용한 3중 오류정정 복호기 설계)

  • 조용석;박상규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.8A
    • /
    • pp.1238-1244
    • /
    • 1999
  • In this paper, a new design of a triple-erroe-correcting (TEC) Reed-Solomon decoder is presented based on direct decoding method which is more efficient for the case of relatively small error correction capability. The proposed decoder requires only 9 GF(2m) multipliers in obtaining the error-locator polynomial and the error-evaluator polynomial, whereas other decoders needs 24 multipliers. Thus, the attractive feature of this decoder is its remarkable simplicity from the point of view of implementation. Futhermore, the proposed TEC Reed-Solomon decoder has very simple control circuit and short decoding delay. Therefore this decoder can be implemented by simple hardware and also save buffer memory which stores received sequence.

  • PDF

VLSI Implementation of CORDIC-based Derotator (CORDIC 구조를 이용한 디지털 위상 오차 보상기의 VLSI 구현)

  • 안영호;남승현;성원용
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.3
    • /
    • pp.35-46
    • /
    • 1999
  • A derotator VLSI which compensates for the frequency and phase errors of a received signal in digital communication systems was developed employing a CORDIC algorithm. The CORDIC circuit directly rotates the input signal according to the phase error information, thus is much simpler than the conventional derotator architecture which consists of a DDFS (Direct Digital Frequency Synthesizer) and a complex multiplier. Since a derotator needs only small phase error accumulation, a fast direction sequence generation method which exploits the linearity of the arctangent function in small angles is utilized in order to enhance the operating speed. The chip was designed and implemented using a $0.6\mu\textrm{m}$ triple metal CMOS process by the full custom layout method. The whole chip size is $6.8\textrm{mm}^2$ and the maximum operating frequency is 25 MHz.

  • PDF

A New Performance Function-Based Control Strategy for Hybrid Series Active Power Filter in Three-Phase Four-Wire Systems (3상 4선식 하이브리드 형 직렬 능동전력필터에 대한 새로운 성능함수 제어 이론)

  • 신재화;김진선;김영석
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.11
    • /
    • pp.563-571
    • /
    • 2003
  • In this paper, the control algorithm and control method for a combined system of shunt passive filter and series active filter in 3-phase 4-wire system are discussed. Moreover, the three-phase four-wire system is widely employed in distributing electric energy to several office building and manufacturing plants. In such systems, the third harmonic and its 3th harmonics are termed as triple and zero sequence components that do not cancel each other in the system neutral. Consequently, the triple harmonics add together creating a primary source of excessive neutral current. Regarding this concern, this paper presents a new control algorithm for a series hybrid active system, whereas the control approach it adopts may directly influence its compensation characteristics. Hence, the advantage of this control algorithm is direct extraction of compensation voltage reference and the required rating of the series active filter is much smaller than that of a conventional shunt active filter. Some experiments were executed and experimental results from a prototype active power filter confirm the suitability of the proposed approach.

Hybrid Series Active Power filter Based on Performance Function Theory for 3-Phase 4-wire System (성능함수제어 알고리즘을 이용한 3상 4선식 하이브리드형 직렬능동전력필터)

  • Kim, Jin-Sun;Shin, Jae-Hwa;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1096-1098
    • /
    • 2003
  • In this paper, the control algorithm and control methods for a combined system of shunt passive filter and series active filter in 3-phase 4-wire system are discussed. Moreover, the 3-phase 4-wire system is widely employed in distributing electric energy to several office building and manufacturing plants. In such systems, the third harmonic and odd multiples of $3^{rd}$($9^{th}$, $15^{th}$, etc.) are termed as triple and zero sequence components that do not cancel each other in the system neutral. As a result, the triple harmonics add together creating a primary source of excessive neutral current. Regarding this concern, this paper presents a new control scheme for a series hybrid active system. This series active power filter acts not only as a harmonic compensator but also as a harmonic isolator. Hence the required rating of the series active filter is much smaller than that of a conventional shunt active filter. However, the performance of the combined system is greatly influenced by the filtering algorithm employed in the active power filter. This paper proposes a series active power filter scheme based on performance function. Some experiments was executed and experimental results from a prototype active power filter confirm the suitability of the proposed approach.

  • PDF

Backbone NMR Assignments of a Prokaryotic Molecular Chaperone, Hsp33 from Escherichia coli

  • Lee, Yoo-Sup;Won, Hyung-Sik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.16 no.2
    • /
    • pp.172-184
    • /
    • 2012
  • The prokaryotic molecular chaperone Hsp33 achieves its holdase activity upon response to oxidative stress particularly at elevated temperature. Despite many structural studies of Hsp33, which were conducted mainly by X-ray crystallography, the actual structures of the Hsp33 in solution remains controversial. Thus, we have initiated NMR study of the reduced, inactive Hsp33 monomer and backbone NMR assignments were obtained in the present study. Based on a series of triple resonance spectra measured on a triply isotope-[$^2H/^{13}C/^{15}N$]-labeled protein, sequence-specific assignments of the backbone amide signals observed in the 2D-[$^1H/^{15}N$]TROSY spectrum could be completed up to more than 96%. However, even considering the small portion of non-assigned resonances due to the lack of sequential connectivity, we confirmed that the total number of observed signals was quite smaller than that expected from the number of amino acid residues in Hsp33. Thus, it is postulated that peculiar dynamic properties would be involved in the solution structure of the inactive Hsp33 monomer. We expect that the present assignment data would eventually provide the most fundamental and important data for the progressing studies on the 3-dimensional structure and molecular dynamics of Hsp33, which are critical for understanding its activation process.

Characterizations of Lie Triple Higher Derivations of Triangular Algebras by Local Actions

  • Ashraf, Mohammad;Akhtar, Mohd Shuaib;Jabeen, Aisha
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.4
    • /
    • pp.683-710
    • /
    • 2020
  • Let ℕ be the set of nonnegative integers and 𝕬 be a 2-torsion free triangular algebra over a commutative ring ℛ. In the present paper, under some lenient assumptions on 𝕬, it is proved that if Δ = {𝛿n}n∈ℕ is a sequence of ℛ-linear mappings 𝛿n : 𝕬 → 𝕬 satisfying ${\delta}_n([[x,\;y],\;z])\;=\;\displaystyle\sum_{i+j+k=n}\;[[{\delta}_i(x),\;{\delta}_j(y)],\;{\delta}_k(z)]$ for all x, y, z ∈ 𝕬 with xy = 0 (resp. xy = p, where p is a nontrivial idempotent of 𝕬), then for each n ∈ ℕ, 𝛿n = dn + 𝜏n; where dn : 𝕬 → 𝕬 is ℛ-linear mapping satisfying $d_n(xy)\;=\;\displaystyle\sum_{i+j=n}\;d_i(x)d_j(y)$ for all x, y ∈ 𝕬, i.e. 𝒟 = {dn}n∈ℕ is a higher derivation on 𝕬 and 𝜏n : 𝕬 → Z(𝕬) (where Z(𝕬) is the center of 𝕬) is an ℛ-linear map vanishing at every second commutator [[x, y], z] with xy = 0 (resp. xy = p).

The impact of EPB pressure on surface settlement and face displacement in intersection of triple tunnels at Mashhad metro

  • Eskandari, Fatemeh;Goharrizi, Kamran Goshtasbi;Hooti, Amir
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.769-774
    • /
    • 2018
  • The growth of cities requires the construction of new tunnels close to the existing ones. Prediction and control of ground movement around the tunnel are important especially in urban area. The ground respond due to EPB (Earth Pressure Balance) pressure are investigated using the finite element method by ABAQUS in intersection of the triplet tunnels (Line 2, 3 and 4) of Mashhad Urban Railway in Iran. Special attention is paid to the effect of EPB pressure on the tunnel face displacement. The results of the analysis show that in EPB tunneling, surface settlement and face displacement is related to EPB pressure. Moreover, it is found that tunnel construction sequence is a great effect in face displacement value. For this study, this value in Line 4 where is excavated after line 3, is smaller than that line. In addition, the trend of the displacement curves are changed with the depth for all lines where is located in above and below, close to and above the centerline tunnel face for Line 2, 3 and 4, respectively. It is concluded that: (i) the surface settlement decreases with increasing EPB pressure on the tunnel face; (ii) at a constant EPB pressure, the tunnel face displacement values increase with depth. In addition, this is depended on the tunneling sequence; (iii) the trend of the displacement curves change with the depth.