DOI QR코드

DOI QR Code

Heteronuclear NMR studies on 44 kDa dimer, syndesmos

  • Kim, Heeyoun (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University,) ;
  • Lee, Inhwan (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University,) ;
  • Han, Jeongmin (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University,) ;
  • Cheong, Hae-kap (Magnetic Resonance Team,Korea Basic Science Institute (KBSI)) ;
  • Kim, Eunhee (Magnetic Resonance Team,Korea Basic Science Institute (KBSI)) ;
  • Lee, Weontae (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University,)
  • Received : 2015.07.29
  • Accepted : 2015.09.10
  • Published : 2015.10.10

Abstract

Syndesmos, which is co-localized with syndecan-4 cytoplasmic domain ($Syn4^{cyto}$) in focal contacts, interacts with various cell adhesion adaptor proteins including $Syn4^{cyto}$ to control cell signaling. Syndesmos consists of 211 amino acids and it exists as a dimer (44kDa) in solution. Recently, we have determined the structure of syndesmos by x-ray crystallography, however, dynamics related to syndecan binding still remain elusive. In this report, we performed NMR experiments to acquire biochemical and structural information of syndesmos. Based on a series of three-dimensional triple resonance experiments on a $^{13}C/^{15}N/^2H$ labeled protein, NMR spectra were obtained with well dispersed and homogeneous NMR data. We present the sequence specific backbone assignment of syndesmos and assigned NMR data with combination structural information can be directly used for the studies on interaction with $Syn4^{cyto}$ and other binding molecules.

Keywords

References

  1. A. G. McLennan, Cell Mol. Life Sci. 63, 123 (2006) https://doi.org/10.1007/s00018-005-5386-7
  2. M. J. Bessman, D. N. Frick, and S. F. O'Handley, J. Biol. Chem. 271, 25059 (1996) https://doi.org/10.1074/jbc.271.41.25059
  3. M. J. Taylor and B. A. Peculis, Nucleic Acids Res. 36, 6021 (2008) https://doi.org/10.1093/nar/gkn605
  4. A. S. Mildvan. Z. Xia, H. F. Azurmendi, V. Sarawat, P. M. Legler, M. A. Massiah, S. B. Gabelli, M. A. Bianchet, L.W. Kang, and L. M. Amzel, Arch Biochem. Biophys. 433, 129 (2005) https://doi.org/10.1016/j.abb.2004.08.017
  5. P. C. Baciu, S. Saoncella, S. H. Lee, F. Denhez, D. Leuthardt, and P. F. Goetinck, Cell Sci. 113, 315 (2000)
  6. F. Denhez, S. A. Wilcox-Adelman, P. C.Baciu, S. Saoncella, S. Lee, B. French, W. Neveu, and P. F. Goetinck, J. Biol. Chem. 277, 12270 (2002) https://doi.org/10.1074/jbc.M110291200
  7. H. Kim, J. Yoo, I. Lee, Y. J. Kang, H. S.Cho, and W. Lee, Biochem. Biophys. Res. Commun. 463, 762 (2015) https://doi.org/10.1016/j.bbrc.2015.06.010
  8. B. K. Koo, Y. S. Jung, J. Shin, I. Han, E. Mortier, P. Zimmermann, J. R. Whiteford, J. R. Couchman, E. S. Oh, and W. Lee, J. Mol. Biol. 355, 651 (2006) https://doi.org/10.1016/j.jmb.2005.09.087
  9. A. Woods and J. R. Couchman, Curr. Opin. Cell Biol. 13, 578 (2001) https://doi.org/10.1016/S0955-0674(00)00254-4
  10. H. Kim, E. Hong, and W. Lee, JKMRS 15, 115 (2011)
  11. K-O Lee and J-Y Suh, JKMRS 19, 172 (2014)
  12. S. Park, JKMRS 18, 47 (2014)
  13. R. Otten, B. Chu, K. D. Krewulak, H. J. Vogel, and F. A. Mulder, J. Am. Chem. Soc. 132, 2952 (2010) https://doi.org/10.1021/ja907706a
  14. M. Sattler and S. W. Fesik, Structure. 15, 1245 (1996)
  15. C. Ritter, T. Luhrs, W. Kwiatkowski, R. Riek, J. Biomol. NMR. 28, 289 (2004) https://doi.org/10.1023/B:JNMR.0000013698.89582.dc
  16. A. Krejcirikova and V. Tugarinov, J. Biomol. NMR. 54, 135 (2012) https://doi.org/10.1007/s10858-012-9667-9
  17. K. Pervushin, D. Braun ,C. Fernandez , and K. Wuthrich, J. Biomol. NMR. 17, 195 (2000) https://doi.org/10.1023/A:1008399320576

Cited by

  1. Per-deuteration and NMR experiments for the backbone assignment of 62 kDa protein, Hsp31 vol.19, pp.3, 2015, https://doi.org/10.6564/JKMRS.2015.19.3.112