• Title/Summary/Keyword: trichothecenes

Search Result 22, Processing Time 0.021 seconds

TRICHOTHECENES AS ENVIRONMENTAL TOXICANTS

  • Ueno, Yoshio
    • Toxicological Research
    • /
    • v.1 no.1
    • /
    • pp.1-15
    • /
    • 1985
  • The trichothecenes are a chemically related sesquiterpenoid fungal metabolites of Fusarium, Trichoderma, Stachybotrys and others, and at moment more than 70 kinds of derivatives are identified. Historically, they are identified as antifungal and phytotoxic compounds, but after the finding of T-2 toxin from Fusarium tricinctum, several trichothecenes are now considered to be natural toxicants in foodstuffs and feeds.

  • PDF

Cytotoxicity of Trichothecenes to Human Solid Tumor Cells in Vitro

  • Choi, Sang-Un;Choi, Eun-Jung;Kim, Kwang-Hee;Kim, Nam-Young;Kwon, Byung-Mog;Kim, Sung-Uk;Bok, Song-Hae;Lee, So-Young;Lee, Chong-Ock
    • Archives of Pharmacal Research
    • /
    • v.19 no.1
    • /
    • pp.6-11
    • /
    • 1996
  • The trichothecenes are sesquiterpenoid mycotoxins characterized by the 12,13-epoxytrichothec-9-ene ring system. We have tested cytotoxicity of several naturally-occurring or synthesized trichothecenes against human solid tumor cell lines. Among them, trichothecin(I) and $4-\beta$-Acetoxy-12,13-epoxytrichothec-9-ene (trichodermin, II) exhibited highly cytotoxic activities. 4-.betha.-Hydroxy-12,13-epoxytrichothec-9-ene (trichodermol, III) and $4-\beta$-Methoxy-12,13-epoxytrichothec-9-ene (IV) had mild cytotoxicities. But 12,13-Epoxytrichothec-9-ene-4-one (V) and $4-\beta$-Hydroxy-12,13-epoxytrichothec-9-ene(VI) had no cytotoxicities up to 10 $\mug/ml$. And in the tested cell lines, HCT15 colon cancer cell line was the most sensitive to all tested trichothecenes.

  • PDF

Production of 8-ketotrichothecenes by Fusarium graminearum on Corn and Barley (옥수수와 보리에서 Fusarium graminearum의 8-ketotrichothecenes 생성)

  • 서영수;서정아;손황배;이인원
    • Korean Journal Plant Pathology
    • /
    • v.14 no.5
    • /
    • pp.418-424
    • /
    • 1998
  • The production of 8-ketotrichothecenes, deoxynivalenol (DON), nivalenol (NIV), and their monoacetyl derivatives was studied in rice and corn cultures using 8 isolates of Fusarium graminearum which were obtained from corn and barley samples. Higher concentrations of trichothecenes were produced on rice than corn, and production of the toxins on rice was enhanced by growing the fungi at $25^{\circ}C$. The isolates were used for evaluation of toxin production and pathogenicity after artificial inoculation to 5 corn and 3 barley cultivars. The kinds and the relative amounts of trichothecenes produced in cultures were consistent with those in infected kernels of corn and barley with some exceptions. As for DON chemotypes, the ratios of 15-acetyl-DON to 3-acetyl-DON were varied among the pathogen-cultivar interactions. The corn and barley cultivars showed the significant differences of resistance to the Fusarium isolates in disease severity and seedling blight, and resistance ranking to the different isolates was varied. However, significant correlations were observed between the total concentrations of trichothecenes in infected kernels of corn and barley and pathogenicities of the Fusarium isolates to the hosts.

  • PDF

Vegetative Compatibility Groups in Fusarium graminearum Isolates from Corn and Barley in Korea

  • Moon, Jae-Ho;Lee, Yong-Hwan;Lee, Yin-Won
    • The Plant Pathology Journal
    • /
    • v.15 no.1
    • /
    • pp.53-56
    • /
    • 1999
  • Fifty-three isolates of Fusarium graminearum were obtained from corn and barley samples in several provinces of Korea. Gas chromatography-mass spectrometric analysis of trichothecenes produced by these isolates revealed that 37 and 16 isolates were nivalenol (NIV)- and deoxynivalenol (DON)-chemotypes, respectively. Two hundred and seventy-five nitrate-nonutilizing (nit) mutants were obtained from the isolates. Of these mutants, 187 were identified as nit1, nit3, or NitM, but 88 could not be identified as one of these classes. The highest frequency of nit mutant was nit1 (65%), followed by nit3 (20%) and NitM (15%). Higher frequency of NitM was observed in DON-chemotypes than in NIV-chemotypes. The mutants were used for vegetative compatibility group (VCG) analysis by examining heterokaryosis using complementary mutant pairs. No heterokaryon formation was observed among all 1,248 pairwise combinations, suggesting that all isolates tested belong to different VCGs. Higher frequency of self-incompatibility was observed in NIV-chemotypes than in DON-chemotypes. These results suggest that the like-lihood of asexual genetic recombination may be very low I F. graminearum under the field condition.

  • PDF

Relationships between Genetic Diversity and Fusarium Toxin Profiles of Winter Wheat Cultivars

  • Goral, Tomasz;Stuper-Szablewska, Kinga;Busko, Maciej;Boczkowska, Maja;Walentyn-Goral, Dorota;Wisniewska, Halina;Perkowski, Juliusz
    • The Plant Pathology Journal
    • /
    • v.31 no.3
    • /
    • pp.226-244
    • /
    • 2015
  • Fusarium head blight is one of the most important and most common diseases of winter wheat. In order to better understanding this disease and to assess the correlations between different factors, 30 cultivars of this cereal were evaluated in a two-year period. Fusarium head blight resistance was evaluated and the concentration of trichothecene mycotoxins was analysed. Grain samples originated from plants inoculated with Fusarium culmorum and naturally infected with Fusarium species. The genetic distance between the tested cultivars was determined and data were analysed using multivariate data analysis methods. Genetic dissimilarity of wheat cultivars ranged between 0.06 and 0.78. They were grouped into three distinct groups after cluster analysis of genetic distance. Wheat cultivars differed in resistance to spike and kernel infection and in resistance to spread of Fusarium within a spike (type II). Only B trichothecenes (deoxynivalenol, 3-acetyldeoxynivalenol and nivalenol) produced by F. culmorum in grain samples from inoculated plots were present. In control samples trichothecenes of groups A (H-2 toxin, T-2 toxin, T-2 tetraol, T-2 triol, scirpentriol, diacetoxyscirpenol) and B were detected. On the basis of Fusarium head blight assessment and analysis of trichothecene concentration in the grain relationships between morphological characters, Fusarium head blight resistance and mycotoxins in grain of wheat cultivars were examined. The results were used to create of matrices of distance between cultivars - for trichothecene concentration in inoculated and naturally infected grain as well as for FHB resistance Correlations between genetic distance versus resistance/mycotoxin profiles were calculated using the Mantel test. A highly significant correlation between genetic distance and mycotoxin distance was found for the samples inoculated with Fusarium culmorum. Significant but weak relationships were found between genetic distance matrix and FHB resistance or trichothecene concentration in naturally infected grain matrices.

HEALTH RISKS POSED BY MYCOTOXINS IN FOODS

  • Hsieh, D.P.H.
    • Toxicological Research
    • /
    • v.6 no.2
    • /
    • pp.159-166
    • /
    • 1990
  • The ability of many toxigenic fungi to invade and develop in a wide variety of raw ingredients of human diet renders human exposure to mycotoxing very difficult to avoid. Most of the energy-rich commodities, such as cereal grains, oil seeds, tree nuts, and dehydrated fruits, are susceptible to mycotoxin contamination. Mycotoxins therefare have been recognized as an important class of hazardous substances in the human food chain. Although human exposure to mycotoxins is largely through ingestion, inhalation and skin contact may also be significant under conditions other than consumption of foods. Human ingestion of mycotoxins is due to consumption of contaminated dietary ingredients and the edible tissues and products of domestic animals that have been exposed to mycotoxins in moldy feed. Large scale acute human mycotoxicoses, such as ergotism in France, alimentary toxic aleukia in Russia, yellow rice syndrome in Japan, endemic nephropathy in Balkan countries, and acute aflatoxin poisonings in India and Taiwan, have been well documented, indicating that mycotoxicosis is a global problem. In some incidents, hundreds of victims were killed and many more became seriously ill. The mycotoxins that have been implicated in the etiology of these human diseases include aflatoxins, citreoviridin, cyclopiazonic acid, ergot alkaloids, moniliformin, ochratoxin A, trichothecenes, tenuazonic acid, and zearalenone. Among these, aflatoxins have been also implicated in the etiology of human primary liver cancer in those high-incidence countries in Africa and southeast Asia. It is well recognized that cause-effect relationship between mycotoxins and human diseases is very difficult to establish, especially for the cancer connection. Careful risk assessment must be performed to determine whether a mycotoxin indeed warrants costly regulatory actions.

  • PDF

Occurrence of Toxigenic Fusarium vorosii among Small Grain Cereals in Korea

  • Lee, Theresa;Paek, Ji-Seon;Lee, Kyung Ah;Lee, Soohyung;Choi, Jung-Hye;Ham, Hyeonheui;Hong, Sung Kee;Ryu, Jae-Gee
    • The Plant Pathology Journal
    • /
    • v.32 no.5
    • /
    • pp.407-413
    • /
    • 2016
  • Fusarium graminearum species complex (FGSC) causes Fusarium head blight in small grain cereals. To date, four species (F. graminearum, F. asiaticum, F. boothii, and F. meridionale ) belonging to FGSC frequently occur in Korean cereals. In addition, we first reported the occurrence of additional species (F. vorosii ) within FGSC, which was isolated from barley, corn, and rice in Korea. Phylogenetic analysis of the Fusarium isolates of this group using combined multigene sequences confirmed species identification. Moreover, the macroconidia produced by these isolates were morphologically similar to those of the F. vorosii holotype. Chemical analysis indicated that the F. vorosii isolates produced various trichothecenes such as nivalenol and deoxynivalenol with their acetyl derivatives along with zearalenone. Pathogenicity tests demonstrated that all of the F. vorosii isolates examined were pathogenic on barley, corn, and rice with variation in aggressiveness. This study is the first report of F. vorosii in Korean cereals, their pathogenicity towards barley and corn, and their ability to produce trichothecenes and zearalenone.

Insertional mutagenesis of fusarium graminearum for characterization of genes involved in disease development and mycotoxin production

  • Han, Yon-Kyoung;Lee, Hyo-Jin;Yun, Sung-Hwan;Lee, Yin-Won
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.85.2-86
    • /
    • 2003
  • Fusarium graminearum is an important pathogen of cereal crops in many areas of the world causing head blight and ear rot of small grains. In addition to serious economic losses, this fungus produces mycotoxins, such as trichothecenes and zearalenone on diseased crops and has been a potential threat to human and animal health. To massively identify pathogenesis-related genes from F. graminearum, two representative strains (SCKO4 from rice and Z03643 from wheat) were mutagenized using restriction enzyme-mediated integration (REMI). In total, 20,DOD REMI transformants have been collected from the two strains. So far, 63 mutants for several traits involved in disease development such as virulence, mycotoxin production, and sporulation have been selected from 3,000 REMI transformants. Now, selected mutants of interest have being genetically analyzed using a newly developed outcross method (See Jungkwan Lee et al poster). In addition, cloning and characterization of genomic DNA regions flanking the insertional site in the genome of the mutants are in progress.

  • PDF

Development of a Selective Medium for the Fungal Pathogen Fusarium graminearum Using Toxoflavin Produced by the Bacterial Pathogen Burkholderia glumae

  • Jung, Boknam;Lee, Sehee;Ha, Jiran;Park, Jong-Chul;Han, Sung-Sook;Hwang, Ingyu;Lee, Yin-Won;Lee, Jungkwan
    • The Plant Pathology Journal
    • /
    • v.29 no.4
    • /
    • pp.446-450
    • /
    • 2013
  • The ascomycete fungus Fusarium graminearum is a major causal agent for Fusarium head blight in cereals and produces mycotoxins such as trichothecenes and zearalenone. Isolation of the fungal strains from air or cereals can be hampered by various other airborne fungal pathogens and saprophytic fungi. In this study, we developed a selective medium specific to F. graminearum using toxoflavin produced by the bacterial pathogen Burkholderia glumae. F. graminearum was resistant to toxoflavin, while other fungi were sensitive to this toxin. Supplementing toxoflavin into medium enhanced the isolation of F. graminearum from rice grains by suppressing the growth of saprophytic fungal species. In addition, a medium with or without toxoflavin exposed to wheat fields for 1 h had 84% or 25%, respectively, of colonies identified as F. graminearum. This selection medium provides an efficient tool for isolating F. graminearum, and can be adopted by research groups working on genetics and disease forecasting.

Production of T-2 Toxin and Its Metabolites by Fusarium sporotrichioides Isolates from the Corn Producing Area in Korea (우리나라 옥수수산지에서 분리한 Fusarium sporotrichioides 균주들에 의한 T-2 독소 및 관련 대사물의 생성)

  • Lee, Yin-Won;Kim, Kook-Hyung;Chung, Hoo-Sup
    • The Korean Journal of Mycology
    • /
    • v.18 no.1
    • /
    • pp.13-19
    • /
    • 1990
  • Four isolates of Fusarium sporotrichioides obtained from the corn producing area were tested for their toxicities by feeding the crude cultures to rats. Three out of four isolates were highly toxic and killed all rats within 3-4 days after feeding. The chemical analyses of toxic cultures by thin layer chromatography and gas chromatography-mass spectrometry revealed that two isolates from Jeongsun district produced T-2 toxin and its related trichothecenes. This is the first report that F. sporotrichioides isolates produce T-2 toxin in Korea.

  • PDF