• Title/Summary/Keyword: trichothecene

Search Result 37, Processing Time 0.025 seconds

Cytotoxicity of Acetoxyscirpendiol from Paecilomyces tenuipes (Paecilomyces tenuipes로부터 분리한 Acetoxyscirpendiol의 세포사멸작용)

  • 한희창;김미정;김종수;김하원
    • YAKHAK HOEJI
    • /
    • v.48 no.2
    • /
    • pp.153-158
    • /
    • 2004
  • Paecilomyces tenuipes is one of the famous Chinese medicinal entomopathogenic fungi that parasite in the lavae of silkworm. A cytotoxic compound, 4$\beta$-acetoxyscirpendiol (ASD) was isolated from a methanolic extracts of Paecilomyces tenuipes. The ASD compound belongs to scirpenol subfamily of trichothecene mycotoxin. In a continuation of the elucidation of the mechanism of ASD, we report here the evidences of induction of apoptosis by ASD in human Jurkat T cell line. In MTT reduction assay for monitoring cell viability, ASD showed strong toxicity. The 50 percent inhibitory concentrations of ASD against human T lymphoid Jurkat cell was 59.5 ng/$m\ell$. Phosphatidylserine externalization was increased by ASD at 3 and 6 hrs when compared with that of 6 hrs in the cell line showing in a time-dependent manner. When whole lysates of cells treated with ASD were subjected to western blot assay, 113 kDa poly(ADP-ribose) polymerase (PARP) was significantly cleaved to 89 kDa fragment. Time-dependent DNA fragmentation was also observed when Jurkat T cells were treated with ASD at 100 ng/$m\ell$ for 6 hrs and 18 hrs at the ratios of 8.5% and 15.0%, respectively. From these data, Jurkat T lymphocytes treated with ASD from Paecilomyces tenuipes underwent typical cascades of apoptotic cell death.

Production of T-2 Toxin and Its Metabolites by Fusarium sporotrichioides Isolates from the Corn Producing Area in Korea (우리나라 옥수수산지에서 분리한 Fusarium sporotrichioides 균주들에 의한 T-2 독소 및 관련 대사물의 생성)

  • Lee, Yin-Won;Kim, Kook-Hyung;Chung, Hoo-Sup
    • The Korean Journal of Mycology
    • /
    • v.18 no.1
    • /
    • pp.13-19
    • /
    • 1990
  • Four isolates of Fusarium sporotrichioides obtained from the corn producing area were tested for their toxicities by feeding the crude cultures to rats. Three out of four isolates were highly toxic and killed all rats within 3-4 days after feeding. The chemical analyses of toxic cultures by thin layer chromatography and gas chromatography-mass spectrometry revealed that two isolates from Jeongsun district produced T-2 toxin and its related trichothecenes. This is the first report that F. sporotrichioides isolates produce T-2 toxin in Korea.

  • PDF

Natural Occurrence of Fusarium Mycotoxins in Cereals (곡류에서의Fusarium속 곰팡이 독소의 오염)

  • 이인원;김진철
    • Journal of Food Hygiene and Safety
    • /
    • v.8 no.2
    • /
    • pp.23-32
    • /
    • 1993
  • Species of the genus Fusarium are worldwide in their distribution. They are saprophytes as soil inhabitants and parasites of cultivated plants. Some isolates of certain species car capable of producing mycotoxins. Mycotoxicoses, including moldy corn toxicosis, alimentary toxic aleukia, fusariotoxicosis, and rel mold disease are known to be associated with trichothecene-producing fungi. Historically severe epidemic of cereal scab occred in the southern part of Korea in 1963. The epidemic caused a social problem because of not only heavy economic losses but also mycotoxicoses to humans and farm animals. However the toxic principles were remained unknown until some publications in 1980's indicated that trichothecenes and zearalenone were major mycotoxins in Korea cereals contaminated with Fusarium moniliforme have been found to be associated with human and animal disease such as leukoencephalomalacia in horses, pulmonary edema in swine and esophageal cancer in humans. High concentrations of fumonisins have been detected in corn samples from high espohoageal cancer risk areas of South Africa and China. Thus fumonisins have been implicated in the etiolgy of human esophageal cancer in those high incidence countries. Recently increase of imported cereals from foreign countries demands to assess the safety of mycotoxins in Korea. The informations on the natural occurrence of mycotoxins are needed to solve the toxicological problems in humans and farm animals associated with the consumption of moldy cereals.

  • PDF

Shifting reproductive mode of a mycotoxin producing-fungus by manipulation of mating-type genes

  • Lee, Jungkwan;Lee, Teresa;Lee, Yin-Won;Yun, Sung-Hwan;Gillian Turgeon
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.85.1-85
    • /
    • 2003
  • In most ascomycetes, a single mating type locus, MAT, with two alternate forms (MAT1-1 and MAT1-2) called idiomorphs, controls mating ability. In heterothallic ascomycetes these alternate idiomorphs reside in different nuclei. In contrast, most homothallic ascomycetes carry both MAT1-1 and MAT1-2 in a single nucleus, usually closely linked. An example of the latter is Gibberella zeae, a producer of mycotoxins such as trichothecene and zearalenone that threaten human and animal health. We asked if G. zeae could be made strictly heterothallic by manipulation of MAT. Targeted gene replacement was used to differentially delete MAT1-1 or MAT1-2 from a wild type haploid MAT1-1 MAT1-2 strain, resulting in MAT1-1;mat1-2, mat1-1;MAT1-2 strains that were self-sterile, yet able to cross to wild type testers and more importantly, to each other. These results indicated that differential deletion of MAT idiomorphs eliminates selfing ability of G. zeae, but the ability to outcross is retained. To our knowledge, this is the first report of complete conversion of fungal reproductive strategy from homothallic to heterothallic by targeted manipulation of MAT. Practically, this approach opens the door to simple and efficient procedures for obtaining sexual recombinants of G. zeae that will be useful for genetic analyses of mycotoxin production and other traits, such as ability to cause disease.

  • PDF

Functional Roles of a Putative B' Delta Regulatory Subunit and a Catalytic Subunit of Protein Phosphatase 2A in the Cereal Pathogen Fusarium graminearum

  • Kim, Hee-Kyoung;Yun, Sung-Hwan
    • The Plant Pathology Journal
    • /
    • v.28 no.3
    • /
    • pp.259-269
    • /
    • 2012
  • Protein phosphatase 2A (PP2A), a family of serine/threonine protein phosphatases, plays an important role in balancing the phosphorylation status of cellular proteins for regulating diverse biological functions in eukaryotic organisms. Despite intensive studies in mammals, limited information on its role is available in filamentous fungi. Here, we investigated the functional roles of genes for a putative B' delta regulatory subunit (FgPP2AR) and a catalytic subunit (FgPP2AC) of PP2A in a filamentous ascomycete, Fusarium graminearum. Molecular characterization of an insertional mutant of this plant pathogenic fungus allowed us to identify the roles of FgPP2AR. Targeted gene replacement and complementation analyses demonstrated that the deletion of FgPP2AR, which was constitutively expressed in all growth stages, caused drastic changes in hyphal growth, conidia morphology/germination, gene expression for mycotoxin production, sexual development and pathogenicity. In particular, overproduction of aberrant cylindrical-shaped conidia is suggestive of arthroconidial induction in the ${\Delta}FgPP2AR$ strain, which has never been described in F. graminearum. In contrast, the ${\Delta}FgPP2AC$ strain was not significantly different from its wild-type progenitor in conidiation, trichothecene gene expression, and pathogenicity; however, it showed reduced hyphal growth and no perithecial formation. The double-deletion ${\Delta}FgPP2AR;{\Delta}FgPP2AC$ strain had more severe defects than single-deletion strains in all examined phenotypes. Taken together, our results indicate that both the putative regulatory and catalytic subunits of PP2A are involved in various cellular processes for fungal development in F. graminearum.

Characterization of Nivalenol-Producing Fusarium culmorum Isolates Obtained from the Air at a Rice Paddy Field in Korea

  • Kim, Da-Woon;Kim, Gi-Yong;Kim, Hee-Kyoung;Kim, Jueun;Jeon, Sun Jeong;Lee, Chul Won;Lee, Hyang Burm;Yun, Sung-Hwan
    • The Plant Pathology Journal
    • /
    • v.32 no.3
    • /
    • pp.182-189
    • /
    • 2016
  • Together with the Fusarium graminearum species complex, F. culmorum is a major member of the causal agents of Fusarium head blight on cereals such as wheat, barley and corn. It causes significant yield and quality losses and results in the contamination of grain with mycotoxins that are harmful to humans and animals. In Korea, F. culmorum is listed as a quarantine fungal species since it has yet to be found in the country. In this paper, we report that two isolates (J1 and J2) of F. culmorum were collected from the air at a rice paddy field in Korea. Species identification was confirmed by phylogenetic analysis using multilocus sequence data derived from five genes encoding translation elongation factor, histone H3, phosphate permease, a reductase, and an ammonia ligase and by morphological comparison with reference strains. Both diagnostic PCR and chemical analysis confirmed that these F. culmorum isolates had the capacity to produce nivalenol, the trichothecene mycotoxin, in rice substrate. In addition, both isolates were pathogenic on wheat heads and corn stalks. This is the first report on the occurrence of F. culmorum in Korea.

Comparative Pathogenicity of Fusarium graminearum Isolates from Wheat Kernels in Korea

  • Shin, Sanghyun;Son, Jae-Han;Park, Jong-Chul;Kim, Kyeong-Hoon;Yoon, Young-mi;Cheong, Young-Keun;Kim, Kyong-Ho;Hyun, Jong-Nae;Park, Chul Soo;Dill-Macky, Ruth;Kang, Chon-Sik
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.347-355
    • /
    • 2018
  • Fusarium head blight (FHB) caused by Fusarium species is a major disease of wheat and barley around the world. FHB causes yield reductions and contamination of grains with trichothecene mycotoxins including; nivalenol (NIV), deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON), and 15-acetyldeoxynivalenol (15-ADON). The objectives of this study were to identify strains of F. graminearum isolated in Korea from 2012-harvested wheat grain and to test the pathogenicity of these NIV- and DON-producing isolates. Three hundred and four samples of wheat grain, harvested in 2012 in Chungnam, Chungbuk, Gyeongnam, Jeonbuk, Jeonnam, and Gangwon provinces were collected. We recovered 44 isolates from the 304 samples, based on the PCR amplification of internal transcribed spacer (ITS) rRNA region and sequencing. Our findings indicate that F. asiaticum was the predominant (95% of all isolates) species in Korea. We recovered both F. asiaticum and F. graminearum from samples collected in Chungnam province. Of the 44 isolates recovered, 36 isolates had a NIV genotype while 8 isolates belonged to the DON genotype (3-ADON and 15-ADON). In order to characterize the pathogenicity of the strains collected, disease severity was assessed visually on various greenhouse-grown wheat cultivars inoculated using both NIV- and DON-producing isolates. Our results suggest that Korean F. graminearum isolates from wheat belong to F. asiaticum producing NIV, and both F. graminearum and F. asiaticum are not significantly different on virulence in wheat cultivars.

A Simple Method for the Assessment of Fusarium Head Blight Resistance in Korean Wheat Seedlings Inoculated with Fusarium graminearum

  • Shin, Sanghyun;Kim, Kyeong-Hoon;Kang, Chon-Sik;Cho, Kwang-Min;Park, Chul Soo;Okagaki, Ron;Park, Jong-Chul
    • The Plant Pathology Journal
    • /
    • v.30 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • Fusarium head blight (FHB; scab) caused mainly by Fusarium graminearum is a devastating disease of wheat and barley around the world. FHB causes yield reductions and contamination of grain with trichothecene mycotoxins such as deoxynivalenol (DON) which are a major health concern for humans and animals. The objective of this research was to develop an easy seed or seedling inoculation assay, and to compare these assays with whole plant resistance of twenty-nine Korean winter wheat cultivars to FHB. The clip-dipping assay consists of cutting off the coleoptiles apex, dipping the coleoptiles apex in conidial suspension, covering in plastic bag for 3 days, and measuring the lengths of lesions 7 days after inoculation. There were significant cultivar differences after inoculation with F. graminearum in seedling relative to the controls. Correlation coefficients between the lesion lengths of clip-dipping inoculation and FHB Type II resistance from adult plants were significant (r=0.45; P<0.05). Results from two other seedling inoculation methods, spraying and pin-point inoculation, were not correlated with adult FHB resistance. Single linear correlation was not significant between seed germination assays (soaking and soak-dry) and FHB resistance (Type I and Type II), respectively. These results showed that clip-dipping inoculation method using F. graminearum may offer a real possibility of simple, rapid, and reliable for the early screening of FHB resistance in wheat.

Trends in Researches of Fusarium Mycotoxins, T-2 toxin and HT-2 toxin in Domestic and Foreign Countries (Fusarium 곰팡이독소 T-2 독소와 HT-2 독소의 국.내외 연구동향)

  • Lee, Su-Jin;Kim, Mee-Hye;Oh, Sang-Suk;Chun, Hyang-Sook
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.1
    • /
    • pp.1-17
    • /
    • 2012
  • T-2 toxin and HT-2 toxin, belong to type A trichothecences, are the most toxic mycotoxins among the trichothecene family. These mycotoxins are commonly found in cereals such as maize, wheat, barley, oats and rice, and their occurrence in food can be of concern. This review investigated the current trends of patents and researches on T-2 toxin and HT-2 toxin pertaining to natural occurrence, toxicity, metabolism, risk assessment, analytical and screening methods, and reduction/detoxification techniques. As compared with other $Fusarium$ mycotoxins, there are limited data for natural occurrence and risk assessment, and regulatory limit and official analytical methods on T-2 toxin and HT-2 toxin in domestic and foreign countries. In particular, selective deacetylation at the C3 and/or C4 positions of T-2 toxin by carboxyesterase present in foods was reported to cause the disappearance of T-2 and the extremely high HT-2 recoveries. Currently, regulatory limits for T-2 and HT-2 are under discussion in EU. For enforcement purposes it is essential to have available precise and reliable analytical methods applicable at the regulatory levels for the T-2 toxin and HT-2 toxin and relevant commodities. In addition, a further study on natural occurrence, risk assessment and reduction/detoxification techniques will be recommended.

Toxigenic Mycobiota of Small Grain Cereals in Korea

  • Lee, Theresa
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.33-33
    • /
    • 2016
  • Mycotoxins are toxic secondary metabolites produced by fungi. They can be present in where agricultural-based commodities are contaminated with toxigenic fungi. These mycotoxins cause various toxicoses in human and livestock when consumed. Small grains including corn, barley, rice or wheat are frequently contaminated with mycotoxins due to infection mainly by toxigenic Fusarium species and/or under environment favorable to fungal growth. One of the most well-known Fusarium toxin groups in cereals is trichothecenes consisting of many toxic compounds. Deoxynivalenol (DON), nivalenol (NIV), T-2 toxin, and various derivatives belong to this group. Zearalenone and fumonisin (FB) are also frequently produced by many species of the same genus. In order to monitor Korean cereals for contamination with Fusarium and other mycotoxigenic fungal species as well, barley, corn, maize, rice grains, and soybean were collected from fields at harvest or during storage for several years. The fungal colonies outgrown from the grain samples were identified based on morphological and molecular characteristics. Trichothecene chemotypes of Fusarium species or presence of FB biosynthetic gene were determined using respective diagnostic PCR to predict possible toxin production. Heavy grain contamination with fungi was detected in barley, rice and wheat. Predominant fungal genus of barley and wheat was Alternaria (up to 90%) while that of rice was Fusarium (~40%). Epicoccum also appeared frequently in barley, rice and wheat. While frequency of Fusarium species in barley and wheat was less than 20%, the genus mainly consisted of Fusarium graminearum species complex (FGSC) which known to be head blight pathogen and mycotoxin producer. Fusarium composition of rice was more diverse as FGSC, Fusarium incarnatum-equiseti species complex (FIESC), and Fusarium fujikuroi species complex (FFSC) appeared all at considerable frequencies. Prevalent fungal species of corn was FFSC (~50%), followed by FGSC (<30%). Most of FFSC isolates of corn tested appeared to be FB producer. In corn, Fusarium graminearum and DON chemotype dominate within FGSC, which was different from other cereals. Soybeans were contaminated with fungi less than other crops and Cercospora, Cladosporium, Alternaria, Fusarium etc. were detected at low frequencies (up to 14%). Other toxigenic species such as Aspergillus and Penicillium were irregularly detected at very low frequencies. Multi-year survey of small grains revealed dominant fungal species of Korea (barley, rice and wheat) is Fusarium asiaticum having NIV chemotype.

  • PDF