DOI QR코드

DOI QR Code

Comparative Pathogenicity of Fusarium graminearum Isolates from Wheat Kernels in Korea

  • Received : 2018.02.01
  • Accepted : 2018.05.25
  • Published : 2018.10.01

Abstract

Fusarium head blight (FHB) caused by Fusarium species is a major disease of wheat and barley around the world. FHB causes yield reductions and contamination of grains with trichothecene mycotoxins including; nivalenol (NIV), deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON), and 15-acetyldeoxynivalenol (15-ADON). The objectives of this study were to identify strains of F. graminearum isolated in Korea from 2012-harvested wheat grain and to test the pathogenicity of these NIV- and DON-producing isolates. Three hundred and four samples of wheat grain, harvested in 2012 in Chungnam, Chungbuk, Gyeongnam, Jeonbuk, Jeonnam, and Gangwon provinces were collected. We recovered 44 isolates from the 304 samples, based on the PCR amplification of internal transcribed spacer (ITS) rRNA region and sequencing. Our findings indicate that F. asiaticum was the predominant (95% of all isolates) species in Korea. We recovered both F. asiaticum and F. graminearum from samples collected in Chungnam province. Of the 44 isolates recovered, 36 isolates had a NIV genotype while 8 isolates belonged to the DON genotype (3-ADON and 15-ADON). In order to characterize the pathogenicity of the strains collected, disease severity was assessed visually on various greenhouse-grown wheat cultivars inoculated using both NIV- and DON-producing isolates. Our results suggest that Korean F. graminearum isolates from wheat belong to F. asiaticum producing NIV, and both F. graminearum and F. asiaticum are not significantly different on virulence in wheat cultivars.

Keywords

References

  1. Akinsanmi, O. A., Mitter, V., Simpfendorfer, S., Backhouse, D. and Chakraborty, S. 2004. Identity and pathogenicity of Fusarium spp. isolated from wheat fields in Queensland and northern New South Wales. Aust. J. Agric. Res. 55:97-107. https://doi.org/10.1071/AR03090
  2. Bai, G. and Shaner, G. 1994. Scab of wheat: prospects for control. Plant Dis. 78:760-766. https://doi.org/10.1094/PD-78-0760
  3. Carter, J. P., Rezanoor, H. N., Holden, D., Desjardins, A. E., Plattner, R. D. and Nicholson, P. 2002. Variation in pathogenicity associated with the genetic diversity of Fusarium graminearum. Eur. J. Plant Pathol. 108:573-583. https://doi.org/10.1023/A:1019921203161
  4. Chun, J. H. 1963. Epidemiological survey of human mycotoxicosis caused by scabby cereals. In: Research report on wheat and barley scab., ed. by Republic of Korea, pp. 385-507.
  5. Ministry of Agriculture and Forestry, Seoul, Korea (in Korean). Chung, H. S. 1975. Cereal scab causing mycotoxicoses in Korea and present status of mycotoxin research. Kor. J. Mycol. 3:31-36.
  6. Desjardins, A. E., Proctor, R. H., Bai, G., McCormick, S. P., Shaner, G., Buechley, G. and Hohn, T. M. 1996. Reduced virulence of Trichothecene-nonproducing mutants of Gibberella zeae in wheat field tests. Mol. Plant-Microbe Interact. 9:775-781. https://doi.org/10.1094/MPMI-9-0775
  7. Gale, L. R., Harrison, S. A., Ward, T. J., O'Donnell, K., Milus, E. A., Gale, S. W. and Kistler, H. C. 2011. Nivalenol-type populations of Fusarium graminearum and F. asiaticum are prevalent on wheat in southern Louisiana. Phytopathology 101:124-134. https://doi.org/10.1094/PHYTO-03-10-0067
  8. Gilbert, J., Clear, R. M., Ward, T. J., Gaba, D., Tekauz, A., Turkington, T. K., Woods, S. M., Nowicki, T. and O'Donnell, K. 2010. Relative aggressiveness and production of 3- or 15-acetyl deoxynivalenol and deoxynivalenol by Fusarium graminearum in spring wheat. Can. J. Plant Pathol. 32:146-152. https://doi.org/10.1080/07060661003740231
  9. Goswami, R. S. and Kistler, H. C. 2005. Pathogenicity and in planta mycotoxin accumulation among members of the Fusarium graminearum species complex on wheat and rice. Phytopathology 95:1397-1404. https://doi.org/10.1094/PHYTO-95-1397
  10. Jennings, P., Coates, M. E., Walsh, K., Turner, J. A. and Nicholson, P. 2004. Determination of deoxynivalenol- and nivalenol-producing chemotypes of Fusarium graminearum isolated from wheat crops in England and Wales. Plant Pathol. 53:643-652. https://doi.org/10.1111/j.0032-0862.2004.01061.x
  11. Kim, J. C., Kang, H. J., Lee, D. H., Lee, Y. W. and Yoshizawa, T. 1993. Natural occurrence of Fusarium mycotoxins (trichothecenes and zearalenone) in barley and corn in Korea. Appl. Environ. Microbiol. 59:3798-3802.
  12. Kim, H. S., Lee, T., Dawlatana, M., Yun, S. H. and Lee, Y. W. 2003 Polymorphism of trichothecene biosynthesis genes in deoxynivalenol- and nivalenol-producing Fusarium graminearum isolates. Mycol. Res. 107:190-197. https://doi.org/10.1017/S0953756203007317
  13. Lee, J., Chang, I. Y., Kim, H., Yun, S. H., Leslie, J. F. and Lee, Y. W. 2009. Genetic diversity and fitness of Fusarium graminearum populations from rice in Korea. Appl. Environ. Microbiol. 75:3289-3295. https://doi.org/10.1128/AEM.02287-08
  14. Lee, J., Kim, H., Jeon, J. J., Kim, H. S., Zeller, K. A., Carter, L. L. A., Leslie, J. F. and Lee, Y. W. 2012. Population Structure of and Mycotoxin Production by Fusarium graminearum from Maize in South Korea. Appl. Environ. Microbiol. 78:2161-2167. https://doi.org/10.1128/AEM.07043-11
  15. Lee, T., Oh, D. W., Kim, H. S., Lee, J., Kim, Y. H., Yun, S. H. and Lee, Y. W. 2001. Identification of deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae. App. Environ. Microbiol. 67:2966-2972. https://doi.org/10.1128/AEM.67.7.2966-2972.2001
  16. Lee, T., Han, Y. K., Kim, K. H., Yun, S. H. and Lee, Y. W. 2002. Tri13 and Tri7 determine deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae. Appl. Environ. Microbiol. 68:2148-2154. https://doi.org/10.1128/AEM.68.5.2148-2154.2002
  17. Li, H. P., Wu, A. B., Zhao, C. S., Scholten, O., Loffler, H. and Liao, Y. C. 2005. Development of a generic PCR detection of deoxynivalenol- and nivalenol-chemotypes of Fusarium graminearum. FEMS Microbiol. Lett. 243:505-511. https://doi.org/10.1016/j.femsle.2005.01.015
  18. McMullen, M., Jones, R. and Gellenberg, D. 1997. Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis. 81:1340-1348. https://doi.org/10.1094/PDIS.1997.81.12.1340
  19. Miedaner, T., Cumagun, C. J. R. and Chakraborty, S. 2008. Population genetics of three important head blight pathogens Fusarium graminearum, F. pseudograminearum and F. culmorum. J. Phytopathol. 156:129-139. https://doi.org/10.1111/j.1439-0434.2007.01394.x
  20. Miller, J. D., Greenhalgh, R., Wang, Y. Z. and Lu, M. 1991. Trichothecene chemotypes of three Fusarium species. Mycologia 83:121-130. https://doi.org/10.1080/00275514.1991.12025988
  21. Mirocha, C. J., Abbas, H. K., Windels, C. E. and Xie, W. 1989. Variation in deoxynivalenol, 15-acetyldeoxynivalenol, 3-acetyldeoxynivalenol, and zearalenone production by Fusarium graminearum isolates. Appl. Environ. Microbiol. 55:1315-1316.
  22. O'Donnell, K., Kistler, H. C., Tacke, B. K. and Caspar, H. H. 2000. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc. Natl. Acad. Sci. U.S.A. 97:7905-7910. https://doi.org/10.1073/pnas.130193297
  23. Parry, D. W., Jenkinson, P. and McLeod, L. 1995. Fusarium ear blight (scab) in small grain cereals - a review. Plant Pathol. 44:207-238. https://doi.org/10.1111/j.1365-3059.1995.tb02773.x
  24. Park, Y., Shin, H. B., Kim, C. K., Roh, K. H., Yum, J. H., Yong, D., Jeong, S. H. and Lee, K. 2010. Identification of bacterial and fungal isolates by sequence analysis of 16S rRNA and internal transcribed spacer. Korean J. Clin. Microbiol. 13:34-39. https://doi.org/10.5145/KJCM.2010.13.1.34
  25. Proctor, R. H., Desjardins, A. E., McCormick, S. P., Plattner, R. D., Alexander, N. J. and Brown, D. W. 2002. Genetic analysis of the role of trichothecene and fumonisin mycotoxins in the virulence of Fusarium. Eur. J. Plant Pathol. 108:691-698. https://doi.org/10.1023/A:1020637832371
  26. Qu, B., Li, H. P., Zhang, J. B., Huang, T., Carter, J., Liao, Y. C. and Nicholson, P. 2008. Comparison of genetic diversity and pathogenicity of fusarium head blight pathogens from China and Europe by SSCP and seedling assays on wheat. Plant Pathol. 57:642-651. https://doi.org/10.1111/j.1365-3059.2008.01824.x
  27. Ryu, J. G., Lee, S., Lee, S. H., Son, S. W., Nam, Y. J., Kim, M., Lee, T. and Yun, J. C. 2011. Natural occurrence of Fusarium head blight and its mycotoxins in 2010-harvested barley and wheat grains in Korea. Res. Plant Dis. 17:272-279 (in Korean). https://doi.org/10.5423/RPD.2011.17.3.272
  28. Shen, C. M., Hu, Y. C., Sun, H. Y., Li, W., Guo, J. H. and Chen, H. G. 2012. Geographic distribution of trichothecene chemotypes of the Fusarium graminearum species complex in major winter wheat production areas of China. Plant Dis. 96:1172-1178. https://doi.org/10.1094/PDIS-11-11-0974-RE
  29. Sohn, H. B., Seo, J. A. and Lee, Y. W. 1999. Co-occurrence of Fusarium mycotoxins in mouldy and healthy corn from Korea. Food Addit. Contam. 16:153-158. https://doi.org/10.1080/026520399284109
  30. Starkey, D. E., Ward, T. J., Aoki, T., Gale, L. R., Kistler, H. C., Geiser, D. M., Suga, H., Toth, B., Varga, J. and O'Donnell, K. 2007. Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genet. Biol. 44:1191-1204. https://doi.org/10.1016/j.fgb.2007.03.001
  31. Suga, H., Karugia, G. W., Ward, T., Gale, L. R., Tomimura, K., Nakajima, T., Miyasaka, A., Koizumi, S., Kageyama, K. and Hyakumachi, M. 2008. Molecular characterization of the Fusarium graminearum species complex in Japan. Phytopathology. 98:159-166. https://doi.org/10.1094/PHYTO-98-2-0159
  32. Tanaka, T., Hasegawa, A., Matsuki, Y., Ishii, K. and Ueno, Y. 1985. Improved methodology for the simultaneous detection of the trichothecene mycotoxins deoxynivalenol and nivalenol in cereals. Food Addit. Contam. 2:125-137. https://doi.org/10.1080/02652038509373534
  33. Von der Ohe, C., Gauthier, V., Tamburic-Ilincic, L., Brule-Babel, A., Fernando, W. G. D., Clear, R., Ward, T. J. and Miedaner, T. 2010. A comparison of aggressiveness and deoxynivalenol production between Canadian Fusarium graminearum isolates with 3-acetyl and 15-acetyl deoxynivalenol chemotypes in field-grown spring wheat. Eur. J. Plant Pathol. 127:407-417. https://doi.org/10.1007/s10658-010-9607-z
  34. Waldron, B. L., Moreno-Sevilla, B., Anderson, J. A., Stack, R. W. and Frohberg, R. C. 1999. RFLP mapping of a QTL for Fusarium head blight resistance in wheat. Crop Sci. 39:805-811. https://doi.org/10.2135/cropsci1999.0011183X003900030032x
  35. Ward, T. J., Clear, R. M., Rooney, A. P., O'Donnell, K., Gaba, D., Patrick, S., Starkey, D. E., Gilbert, J., Geiser, D. M. and Nowicki, T. W. 2008. An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet. Biol. 45:473-484. https://doi.org/10.1016/j.fgb.2007.10.003
  36. Zhang, H., Zhang, Z., van der Lee, T., Chen, W. Q., Xu, J., Xu, J. S., Yang, L., Yu, D., Waalwijk, C. and Feng, J. 2010. Population genetic analyses of Fusarium asiaticum populations from barley suggest a recent shift favoring 3ADON producers in southern China. Phytopathology 100:328-336. https://doi.org/10.1094/PHYTO-100-4-0328
  37. Zhang, J. B., Wang, J. H., Gong, A. D., Chen, F. F., Song, B., Li, X., Li, H. P., Peng, C. H. and Liao, Y. C. 2013. Natural occurrence of Fusarium head blight, mycotoxins and mycotoxin-producing isolates of Fusarium in commercial fields of wheat in Hubei. Plant Pathol. 62:92-102. https://doi.org/10.1111/j.1365-3059.2012.02639.x