• Title/Summary/Keyword: trichome type

Search Result 36, Processing Time 0.027 seconds

Trichome Morphology of Cimicifuga L. (Ranunculaceae) and Its Taxonomic Significance

  • Park, Chong-Wook
    • Journal of Plant Biology
    • /
    • v.38 no.3
    • /
    • pp.289-295
    • /
    • 1995
  • Trichomes found in the genus Cimicifuga were examined with scanning electron microscopy. Four basic types of trichomes were found in the genus; (1) filiform unicellular trichomes, (2) saccate unicellular trichomes, (3) pyriform unicellular trichomes, and (4) uniseriate multicellular trichomes. All the taxa examined develop at least two different types of trichomes, and many taxa are distinguished by differences in type, microornamentation, density, and position of trichomes. In addition, trichome features appear to be very useful in recognizing species relationships in the genus.

  • PDF

Structural Features of Various Trichomes Developed in Salvinia natans (부유부엽성 생이가래 모용의 구조적 특징)

  • Ji, Sang-Yong;Kim, In-Sun
    • Applied Microscopy
    • /
    • v.32 no.4
    • /
    • pp.319-327
    • /
    • 2002
  • Salvinia natans, an unique water fern having a small rootless body, developed three different types of trichomes throughout the plant. The most peculiar type exhibiting rows of obvious, whitish, multicellular trichome clusters was noticed in the upper surface of the floating leaves. Eight to ten branches within a cluster extended ca. $370{\sim}420{\mu}m$ from the leaf surface. No stalk cell was found, however, four large epidermal cells were discernable at the base of four central branches in the cluster. Each branch consisted of $8{\sim}10$ obliquely-oriented small cells that gradually decreased in size toward the branch tip. The second type was found in the lower surface of the floating leaves, stems, and sporocarps. Multicellular uniseriate trichomes, ca. $430{\sim}980{\mu}m$ long, were distributed all over these structures. The tip of trichome was acicular, but a semi-spheric protuberance of approximately $24{\sim}32{\mu}m$ in diameter occurred at the base of each trichome. The protuberance appeared to be firmly attached to the side of the basal cell, however, internal connection to the trichome cell itself was uncertain. The third type was similar to the second in that multicellur uniseriate trichomes with acicular tip and a protuberance at the base were present. However, the trichomes were considerably long relative to the second type, and only occurred along the surface of highly dissected, submerged leaves. A majority of the trichomes exceeded more than 2 mm in length that hung downward in the water. Regardless of trichome type, all trichomes contained a huge central vacuole with very thin cytoplasm, resulting from the fusion of several vacuoles during early trichome development. The various densely-distributed trichomes formed in Salvinia natans probably play an important role in plant buoyancy.

The taxonomic implication of trichome and epicuticular waxes in tribe Potentilleae (Rosaceae) in Korea (한국산 양지꽃족(Tribe Potentilleae: Rosaceae) 식물의 털과 표피상납질의 분류학적 중요성)

  • Heo, Kyeong-In;Lee, Sangryong;Yoo, Manhee;Lee, Sangtae;Kwon, Youl;Lim, So Yeon;Kim, Seonhee;Kim, Seung-Chul
    • Korean Journal of Plant Taxonomy
    • /
    • v.43 no.2
    • /
    • pp.106-117
    • /
    • 2013
  • Using scanning electron microscope (SEM), we examined the trichomes on leaf and petiole and the epicuticular waxes on leaf surfaces for a total of 27 taxa representing two subtribes, Fragariinae and Potentillinae, of tribe Potentilleae (Rosaceae) in Korea. Four types of trichomes on adaxial and abaxial surface of leaves and petioles were identified. Type I (conical hirtellous) is the most common trichome type found in the majority of taxa in Fragariinae and Potentillinae. Type II (verruculose conical hirtellous) can be found only in Potentilla cryptotaeniae of sect. Conostylae of Potentillinae. Potentilla chinensis complex (sect. Conostylae) and P. egedii (sect. Letostylae) have type III trichome (crispate villous), while type IV (floccose villous) can be found in two species in sect. Conostylae, P. nivea and P. discolor. Both woolly hairs and conical hirtellous exist together in types III and IV. The same type of trichomes in leaves and petioles can be found across different subtribes and sections. In addition, different types of trichomes can be found even in a single species. Among the taxa which have type I trichome, the majority of subtribe Fragariinae and P. centrigrana and P. dickinsii complex have well developed epicuticular waxes on the surface of leaves. Sharing epicuticular waxes among the taxa across different subtribes appears to be correlated with their similar geographical distribution and ecological conditions. However, molecular phylogenetic study implies that the existence of epicuticular waxes could be also due to phylogenetic signal.

Taxonomic study on the achene morphology of Korean Aster L. and its allied taxa (한국산 개미취속 및 근연 분류군의 열매 형태에 관한 분류학적 연구)

  • 정규영;정형진
    • Korean Journal of Plant Resources
    • /
    • v.13 no.3
    • /
    • pp.179-187
    • /
    • 2000
  • The achene morphology about 16 taxa of Korean Aster L. sensu lato were investigated to estimate its taxonomic values. The achene shapes were divided into four types; oblanceolate-oblong, obovate, oblong and obovate-oblong. The trichome shape on achene six types; uniseriate-conical, filiform, cylindrical, capitate type, long stalk capitate and globular. Their distributional features on upper part of achene four types; absent, sparse distribution of conical trichome, dense distribution of conical trichome and mixed distribution of conical and capitate trichome. The achene shapes and trichome characteristics were regarded to be a good characters in delimiting taxa because these did not differ among individuals in same taxa, but differ among the taxa. If Korean Aster L. sensu late were divided into Kalimeris, Heteropappus, Aster, Cymnaster, the capitate forms and mixed distribution of conical and capitate trichome were recognized as the good characters in delimting above section such as genus Kalimeris and Heteropappus, section Pseudocalimeris of Aster L. sensu stricto.

  • PDF

Morphological Classification of Trichomes Associated with Possible Biotic Stress Resistance in the Genus Capsicum

  • Kim, Hyun-Jung;Seo, Eun-Young;Kim, Ji-Hyun;Cheong, Hee-Jin;Kang, Byoung-Cheorl;Choi, Do-Il
    • The Plant Pathology Journal
    • /
    • v.28 no.1
    • /
    • pp.107-113
    • /
    • 2012
  • Trichomes are specialized epidermal structure having the functions of physical and chemical block against biotic and abiotic stresses. Several studies on $Capsicum$ species revealed that virus and herbivore resistance is associated with trichome-formation. However, there is no research on the structural characterization of trichomes developed on the epidermis of $Capsicum$ spp. Thus, this study attempts to charaterize the trichome morphologies in 5 species of $Capsicum$ using a Field Emission Scanning Electron Microscopy (FESEM). Six main trichome types were identified by their morphology under FESEM. Both glandular and non-glandular types of trichomes were developed on the epidermal tissues of $Capsicum$ spp. The glandular trichome were further classified into type I, IV and VII according to their base, stalk length, and stalk. Non-glandular trichomes were also classified into type II, III, and V based on stalk cell number and norphology. Almost all the species in $C.$ $chinense$ and $C.$ $pubescens$ had glandular trichomes. To our knowledge, this is the first study on classification of trichomes in the genus $Capsicum$ and, our results could provide basic informations for understanding the structure and function of trichomes on the epidermal differentiation and association with biotic stress tolerance.

Development of Epidermal Idioblasts in the Reproductive Structures of Lycopersicon esculentum (토마토 (Lycopersicon esculentum) 표피조직의 이형세포 분화 발달)

  • Park, Eun-Hee;Kim, In-Sun
    • Applied Microscopy
    • /
    • v.34 no.4
    • /
    • pp.295-303
    • /
    • 2004
  • Plants of Lycopersicon esculentum, containing various organic compounds, are known to develop idioblasts in their epidermis. Lycopersicon esculentum have long been investigated in many areas, but structural aspects of the epidermis of various organs have not been carried out in detail. Thus, the present study attempted to reveal the patterns of idioblast development, particularly those of the reproductive organs, in L. esculentum epidermis using scanning electron microscopy. The present study mainly focused on patterns of the stomata and trichome types. Two types of stomata were developed in the flowers and fruits: anomocytic stomata (stomata type I) were distributed normally throughout the epidermis, whereas actinocytic raised stomata (stomata type II) were found variously in different epidermal tissues. For the trichomes, both glandular and non-glandular types were developed in the epidermis. The former included peltate glandular trichomes having four head cells (trichome type I) and capitate multicellular glandular trichomes (trichome type II). The latter included non-glandular short trichomes (trichome type III) and considerably elongated trichomes with basal rosette cells (trichome type IV). In paticular, the raised stomata were well-developed in the peduncles and the peltate glandular trichomes were prominent in the sepal and ovary epidermis. Transmission electron microscopy on the ontogeny and ultrastructural differentiation of these idioblasts, associated with the current result, will aid us in better understanding of the structure and functional relationship in the epidermal differentriation of Lycopersicon esculentum.

The nutlet morphology of the genus Glechoma L. (Lamiaceae) and its related taxa (긴병꽃풀속(Glechoma L. 꿀풀과) 및 근연분류군의 소견과 형태에 관한 연구)

  • Jang, Tae-Soo;Hong, Suk-Pyo
    • Korean Journal of Plant Taxonomy
    • /
    • v.40 no.1
    • /
    • pp.50-58
    • /
    • 2010
  • The nutlet morphology and pericarp structure of 14 taxa (4 taxa of the genus Glechoma and related taxa) were studied by light and scanning electron microscopy, and a detailed description of nutlet morphological features for all examined taxa is provided. The shape of the nutlet is ovate to elliptic. Its size is 1.36-3.83 mm in length and 0.80-2.65 mm in width. The largest one was found in Marmoritis rotundifolia, while the smallest one was in Agastache nepetoides. Three different surface types were recognized in the studied taxa based on differences in cell outline and cell boundary relief (rectangular, pitted, and ridged negative reticulate-cell). Three types of trichome (uni-cellular non-glandular trichome, multi-cellular non-glandular trichome, and peltate glandular trichome) were distributed in the nutlets. The pericarp is formed in three layers (i.e., exocarp, mesocarp, and endocarp including sclenchyma tissue), and the pericarp in the studied species is $39.0-237.5{\mu}m$ thick. The morphological and anatomical features (the nutlet shape, surface type, and trichome distribution) in the genus Glechoma and related taxa are described and discussed.

The taxonomic consideration of floral morphology in the Persicaria sect. Cephalophilon (Polygonaceae)

  • KONG, Min-Jung;HONG, Suk-Pyo
    • Korean Journal of Plant Taxonomy
    • /
    • v.48 no.3
    • /
    • pp.185-194
    • /
    • 2018
  • A comparative floral morphological study of 19 taxa in Persicaria sect. Cephalophilon with four taxa related to Koenigia was conducted to evaluate the taxonomic implications. The flowers of P. sect. Cephalophilon have (four-)five-lobed tepals; five, six, or eight stamens, and one pistil with two or three styles. The size range of each floral characteristic varies according to the taxa; generally P. humilis, P. glacialis var. glacialis and Koenigia taxa have rather small floral sizes. The connate degrees of the tepal lobes and styles also vary. The tepal epidermis consists of elongated rectangular cells with variation of the anticlinal cell walls (ACWs). Two types of glandular trichomes are found. The peltate glandular trichome (PT) was observed in nearly all of the studied taxa. The PT was consistently distributed on the outer tepal of P. sect. Cephalophilon, while Koenigia taxa and P. glacialis var. glacialis had this type of trichome on both sides of the tepal. P. criopolitana had only long-stalked pilate-glandular trichomes (LT) on the outer tepal. The nectary is distributed on the basal part of the inner tepal, with three possible shapes: dome-like, elongated, and disc-like nectary. The nectaries are always accompanied by elongated or spheroidal papillae. Various combinations of floral characters (e.g., the numbers of stamens and styles, the stigma shape, the nectary shape, ACWs, cuticular striation and the trichome type and distribution) of P. sect. Cephalophilon are useful when attempting to recognize the infrasectional levels of P. sect. Cephalophilon recently proposed. Here, we describe the floral characteristics in detail and discuss the taxonomic significance of the floral characters.

Structural Features of Various Trichomes in Vitex negundo during Development (방향성 좀목형(Vitex negundo)모용의 구조적 분화발달)

  • Lee, Seung-Hee;Kim, In-Sun
    • Applied Microscopy
    • /
    • v.36 no.1
    • /
    • pp.35-45
    • /
    • 2006
  • Plants of Vitex negundo are known to develop numerous trichomes throughout their body, where certain trichome types have been believed to be one of the plausible structures for the unique scents. In the current study. structural aspects of the trichomes have been examined in leaves and stems of Vitex negundo using TEM and SEM. Trichome types as well as structural changes that occurred in certain trichomes during secretion have been mainly focused. Three type of glandular trichomes and two types of non-glandular trichomes were developed in the epidermis of young and mature Vitex negundo plants. The glandular trichomes included the peltate type (Type 1), the capitate type (Type 2), and degraded capitate type (Type 3), whereas the non-glandular warty trichomes contained the multicellular (Types 4) and unicellular type (Type 5). Type 1 and 2 consisted of head and stalk cells, but their number and size were different. One secretory cavity was formed from the four head cells in the former, but only two head cells were involved in the latter. The cytoplasmic density in the head cell was quite high and in particular, sER and Golgi bodies were well developed. At initiation of their development, the cuticle layer of the head cells separated from the outer tangential wall to form a secretory cavity. Subsequently the cavity expanded acropetally and a large number of secretory vesicles continuously produced from the head cells until they filled the entire cavity. The cavity contained materials that would be soon discharged into intercellular spaces and/or into the air. The cavity began to decrease the volume by contracting at initial secretion but degrade rapidly within short time. It has been suggested that the mode of secretion in V. negundo is probably the eccrine secretion, since no break or rupture of the cavity has been observed during examination. Contrastingly Type 3 exhibited deterioration of the head cell at early stage. Type 4 was about $110{\sim}190{\mu}m$ long, consisting of $2{\sim}3$ cells, and distributed more in the adaxial epidermis compared to the abaxial surface. However, $20{\sim}30{\mu}m$ long Type 5 was extremely dense in both epidermis. Among several trichome types, Type 1 and 2 probably play an important role in discharging unique aromatic scents in plants of V. negundo.

Taxonomic significance of the leaf micromorphology in the tribe Sorbarieae (Spiraeoideae: Rosaceae) (쉬땅나무족(조팝나무아과: 장미과) 잎표피 미세형태학적 형질의 분류학적 유용성)

  • Song, Jun-Ho;Hong, Suk-Pyo
    • Korean Journal of Plant Taxonomy
    • /
    • v.46 no.2
    • /
    • pp.199-212
    • /
    • 2016
  • A comparative study of leaf epidermal microstructures in the tribe Sorbarieae (Adenostoma: 3 spp., Chamaebatiaria: 1 sp., Sorbaria: 11 spp., Spiraeanthus: 1 sp.) including related genera Gillenia (2 spp.) and Lyonothamnus (2 spp.) was carried out using scanning electron microscopy (SEM) in order to evaluate their significance in taxonomy. The leaves of Adenostoma, Chamaebatiaria, and Spiraeanthus were amphistomatic, whereas Gillenia, Lyonothamnus, and Sorbaria were hypostomatic. The size range of the guard cells is $7.84-48.7{\times}5.86-38.6{\mu}m$; the smallest one was found in Sorbaria tomentosa var. tomentosa ($7.84-11.8{\times}6.84-10.5{\mu}m$), while the largest measured example was Adenostoma fasciculatum var. obtusifolium ($30.3-48.7{\times}18.8-38.6{\mu}m$). Anomocytic stomata complex were the most frequent type (rarely cyclocytic), with usually both anomocytic and actinocytic types occurring in one leaf. On the surfaces, both the adaxial and abaxial anticlinal walls of the subsidiary cells vary (e.g., straight/curved, undulate, sinuate). Four types (unicellular non-glandular trichome, stellate, glandular trichome, pustular glandular trichome) of trichomes are found in the leaves. The epicuticular wax can be divided two types: membraneous platelets (Lyonothamnus) and platelets (Sorbaria arborea var. arborea, S. arborea var. subtomentosa, S. kirilowii, S. tomentosa var. tomentosa, Spiraeanthus schrenkianus). The trichome diversity (in particular, stellate, gland) and the existence of epicuticular wax may have taxonomic significance, although the leaf epidermal micromorphological characteristics do not provide synapomorphy in this tribe. These leaf micromorphological features are most likely better understood in the Sorbarieae when used in conjunction with external morphological characters.