• Title/Summary/Keyword: trichlorosilane

Search Result 23, Processing Time 0.02 seconds

Application of a Divided-Wall Column for the Trichlorosilane Refining Process (삼염화실란 정제공정에서의 분리벽형 증류탑 적용)

  • Hong, Seung-Taek;Lee, Moon-Yong
    • Clean Technology
    • /
    • v.16 no.1
    • /
    • pp.64-70
    • /
    • 2010
  • In this study, we suggest the application of the divided-wall column (DWC) to the existing trichlorosilane(TCS) purification process in the commercial polysilicon manufacturing process. Using Aspen HYSYS V7.1, an extensive simulation study was carried out for the analysis of the energy consumptions and capital cost for the conventional sequential distillation configuration and the DWC for producing a given purity and yield of trichlorosilane. As a result, it is shown that the DWC saves the separation energy by 61% and the equipment cost by 58% compared with the conventional distillation process.

Analysis of Trace Trichlorosilane in High Purity Silicon Tetrachloride by Near-IR Spectroscopy (근적외선 분광법을 이용한 고순도 SiCI4 중의 미량 불순물 SiHCI3의 분석)

  • Park, Chan-Jo;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.87-90
    • /
    • 2002
  • The content of $SiHCl_3$ as a trace impurity in $SiCl_4$ was analyzed by Near IR spectrophotometer with optical fiber. The strong absorption bands of $5345{\sim}5116cm^{-1}$ and $4848{\sim}4349cm^{-1}$ were used for analysis of $SiHCl_3$, and the detection limit of impurity $SiCl_3$ was appeared to be 0.005 % in the spectrum. The quantitative analysis by Near IR spectrophotometry showed the analytical possibility of trace impurity in $SiCl_4$ without sample pre-treatment not only in the laboratory but also in the field.

A Study on the Damage Range of Chemical Leakage in Polysilicon Manufacturing Process (폴리실리콘 제조 공정에서 화학물질 누출 시 피해범위에 관한 연구)

  • Woo, Jongwoon;Shin, Changsub
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.4
    • /
    • pp.55-62
    • /
    • 2018
  • There is growing interest in solar power generation due to global warming. As a result, demand for polysilicon, which is the core material for solar cells, is increasing day by day. As the market grows, large and small accidents occurred in the production process. In 2013, hydrochloric acid leaked from the polysilicon manufacturing plant in SangJu. In 2014, a fire occurred at a polysilicon manufacturing plant in Yeosu, and in 2015, STC(Silicon Tetrachloride) leaked at a polysilicon manufacturing plant in Gunsan City. Leakage of chemicals in the polysilicon manufacturing process can affect not only the workplace but also the surrounding area. Therefore, in this study, we identified the hazardous materials used in the polysilicon manufacturing process and quantitatively estimate the amount of leakage and extent of damage when the worst case scenario is applied. As a result, the damage distance by explosion was estimated to be 726 m, and the damage distance to toxicity was estimated to be 4,500 m. And, if TCS(Trichlorosilane), STC(Silicon Tetrachloride), DCS(Dichlorosilane) leaks into the air and reacts with water to generate HCl, the damage distance is predicted to 5.7 km.

Synthesis of Isopropyldichlorosilane by Direct Process

  • Lim, Weon-Cheol;Cho, Joo-Hyun;Han, Joon-Soo;Yoo, Bok-Ryul
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1661-1664
    • /
    • 2007
  • Direct reaction of elemental silicon with a gaseous mixture of isopropyl chloride (1) and hydrogen chloride in the presence of copper catalyst using a stirred bed reactor equipped with a spiral band agitator gave isopropyldichlorosilane having a Si-H bond (2a) as a major product and isopropyltrichlorosilane (2b) along with chlorosilanes, trichlorosilane and tetrachlorosilane. A process for production of 2a was maximized using the 1:0.5 mole ratio of 1 to HCl and smaller size of elemental silicon at a reaction temperature of 220 °C. When a reaction was carried out by feeding a gaseous mixture of 1 [12.9 g/h (0.164 mol/h)] and HCl [2.98 g/h (0.082 mol/h)] to a contact mixture of elemental silicon (360 g) and copper (40 g) under the optimum condition for 45 h, 2a among volatile products kept up about 82 mol % until 35 h and then slowly decreased down 68 mol % in 45 h reaction. Finally 2a was obtained in 38% isolated yield (based on 1 used) with an 85% consumption of elemental silicon in a 45 h reaction. In addition to 2a, 2b was obtained as minor product along with chlorosilanes, trichlorosilane, and tetrachlorosilane. The decomposition of 1 was suppressed and the production of 2a improved by adding HCl to 1.

Characteristics of Self assembled Monolayer as $Ta_2O_5$ Dielectric Interface for Polymer TFTs (중합 박막 트랜지스터를 위한 $Ta_2O_5$ 유전체 접합의 자기조립 단분자막의 특성)

  • Choi, Kwang-Nam;Kwak, Sung-Kwan;Chung, Kwan-Soo;Kim, Dong-Sik
    • 전자공학회논문지 IE
    • /
    • v.43 no.1
    • /
    • pp.1-4
    • /
    • 2006
  • The characteristics of polymeric thin-film transistors(TFTs) can be controlled by chemically modifying the surface of the gate dielectric prior to the organic semiconductor. The chemical treatment consists of derivative the tantalum pentoxide($Ta_2O_5$) surface with organic materials to form self-assembled monolayer(SAM). The deposition of an octadecyl-trichlorosilane(OTS), hexamethy-ldisilazone(HMDS), aminopropyltreithoxysilane(ATS) SAM leads to a mobility of $0.01\sim0.06cm2/V{\cdot}s$ in a poly-3-hexylthiophene(P3HT) conjugated polymer. The mobility enhancement mechanism is likely to involve molecular interactions between the polymer and SAM. These result can be used for polymer TFT's dielectric material.

Adhesion Characteristics between Stamp and Polymer Materials Used in Thermal Nanoimprint Lithography (열 나노임프린트 리소그래피에서 사용되는 스탬프와 폴리머 재료 사이의 점착 특성)

  • Kim Kwang-Seop;Kang Ji-Hoon;Kim Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.22 no.4
    • /
    • pp.182-189
    • /
    • 2006
  • In this paper, the adhesion characteristics between a fused silica without or with an anti-sticking layer and a thermoplastic polymer film used in thermal NIL were investigated experimentally in order to identify the release performance of the anti-sticking layer. The anti-sticking layers were derived from fluoroalkylsilanes, (1H, 1 H, 2H, 2H-perfluorooctyl)trichlorosilane ($F_{13}-OTS$) and (3, 3, 3-trifluoropropyl)trichlorosilane (FPTS), and coated on the silica surface in vapor phase. The commercial polymers, mr-I 7020 and 8020 (micro resist technology, GmbH), for thermal NIL were spin-coated on Si substrate with a rectangular island which was fabricated by conventional microfabrication process to achieve small contact area and easy alignment of flat contact sur- faces. Experimental conditions were similar to the process conditions of thermal NIL. When the polymer film on the island was separated from the silica surface after imprint process, the adhesion force between the silica surface and the polymer film was measured and the surfaces of the silica and the polymer film after the separation were observed. As a result, the anti-sticking layers remarkably reduced the adhesion force and the surface damage of polymer film and the chain length of silane affects the adhesion characteristics. The anti-sticking layers derived from FPTS and $F_{13}-OTS$ reduced the adhesion force per unit area to 38% and 16% of the silica sur-faces without an anti-sticking layer, respectively. The anti-sticking layer derived from $F_{13}-OTS$ was more effective to reduce the adhesion, while both of the anti-sticking layers prevented the surface damages of the polymer film. Finally, it is also found that the adhesion characteristics of mr-I 7020 and mr-I 8020 polymer films were similar with each other.

A Study on Tribological Characteristics of Materials for MEMS/NEMS Using Chemically Modified AFM tip (AFM을 이용한 MEMS/NEMS 공정용 재료의 트라이볼로지 특성에 관한 연구)

  • Heo, Jung-Chul;Kim, Kwang-Seop;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.24 no.2
    • /
    • pp.63-71
    • /
    • 2008
  • Friction and adhesion tests were conducted to investigate tribological characteristics of materials for MEMS/NEMS using atomic force microscope (AFM). AFM Si tips were chemically modified with a self-assembled monolayer (SAM) derived from trichlorosilane like octadecyltrichlorosilane (OTS) and (1H, 1H, 2H, 2H-perfluorooctyl) trichlorosilane (FOTS), and various materials, such as Si, Al, Au, Cu, Ti and PMMA films, were prepared for the tests. SAMs were coated on Si wafer by dipping method prior to AFM tip to determine a proper dipping time. The proper dipping time was determined from the measurements of contact angle, surface energy and thickness of the SAMs. AFM tips were then coated with SAMs by using the same coating condition. Friction and adhesion forces between the AFM Si tip modified with SAM and MEMS/NEMS materials were measured. These forces were compared to those when AFM tip was uncoated. According to the results, after coating OTS and FOTS, the friction and adhesion forces on all materials used in the tests decreased; however, the effect of SAM on the reduction of friction and adhesion forces could be changed according to counterpart materials. OTS was the most effective to reduce the friction and adhesion forces when counterpart material was Cu film. In case of FOTS, friction and adhesion forces decreased the most effectively on Au films.