• Title/Summary/Keyword: tribological properties

Search Result 323, Processing Time 0.024 seconds

Tribological Behavior of Multilayered WC-Ti1-xAlxN Coatings Deposited by Cathodic Arc Deposition Process on High Speed Steel

  • Kim, Jung Gu;Hwang, Woon Suk
    • Corrosion Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.52-61
    • /
    • 2006
  • Recently, much of the current development in surface modification engineering are focused on multilayered coatings. Multilayered coatings have the potential to improve the tribological properties. Four different multilayered coatings were deposited on AISI D2 steel. The prepared samples are designed as $WC-Ti_{0.6}Al_{0.4}N$, $WC-Ti_{0.53}Al_{0.47}N$, $WC-Ti_{0.5}Al_{0.5}N$ and $WC-Ti_{0.43}Al_{0.57}N$. The multilayered coatings were investigated with respect to coating surface and cross-sectional morphology, roughness, adhesion, hardness, porosity and tribological behavior. Especially, wear tests of four multilayered coatings were performed by using a ball-on-disc configuration with a linear sliding speed of 0.017 m/sec, 5.38 N load. The tests were carried out at room temperature in air by employing AISI 52100 steel ball ($H_R=66$) having a diameter of 10 mm. The surface morphology, and topography of the wear scars of samples and balls have been determined by using scanning electron spectroscopy (SEM). Results have showed an improved wear resistance of the $WC-Ti_{1-x}Al_xN$ coatings with increasing of Al concentration. $WC-Ti_{0.43}Al_{0.57}N$ coating with the lower surface roughness and porosity with good adhesion enhanced wear resistance.

The Influence of the Temperature Increase on the Tribological Behavior of DLC Films by RF-PECVD (RF-PECVD로 증착된 DLC 박막의 온도 변화에 따른 트라이볼로지 특성)

  • Lee Young-Ze;Cho Yong-Kyung;Shin Yun-Ha
    • Tribology and Lubricants
    • /
    • v.22 no.3
    • /
    • pp.127-130
    • /
    • 2006
  • DLC (Diamond Like Carbon) films show very desirable surface interactions with high hardness, low friction coefficient, and good wear-resistance properties. The friction behavior of hydrogenated DLC film is dependent on tribological environment, especially surrounding temperature. In this work, the tribological behaviors of DLC (Diamond-like carbon) films, prepared by the radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) method, were studied in elevated temperatures. The ball-on-disk tests with DLC films on steel specimens were conducted at a sliding speed of 60 rpm, a load of 10N, and surrounding various temperatures of $25^{\circ}C,\;40^{\circ}C,\;55^{\circ}C\;and\;75^{\circ}C$. The results show considerable dependency of DLC tribological parameters on temperature. The friction coefficient decreased as the surrounding temperature increased. After tests the wear tracks of hydrogenated DLC film were analyzed by optical microscope, scanning electron spectroscopy (SEM) and Raman spectroscopy. The surface roughness and 3-D images of wear track were also obtained by an atomic force microscope (AFM).

Tribological Characteristics of TiC, TiN Coating for PVD Method with Automotive structural Materials (물리적 증착 방법에 의한 TiC, TiN코팅에 따른 자동차 구조용 재료의 트라이볼로지 특성)

  • Oh, Seong-Mo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.3
    • /
    • pp.432-436
    • /
    • 2007
  • We have studied on the tribological characteristics of Plasma Vapour Deposition(PVD) coating method in Automotive Structural Materials. Coating materials were deposited by the Titanium carbide(TiC) and Titanium nitride(TiN). An experimental process was established to determine the tribological characteristics of friction and wear behaviour with the variation of applied load, temperature and the time with the Falex friction and wear test machine. It was improved that when the surface modification of hard coatings(TiC, TiN) was deposited steel, the tribological characteristics become better. It is argued that it is improved because of excellence of the anti-wear, the extreme pressure properties and tile heat stability.

  • PDF

Estimation of Tribological Properties on Surface Modified SiC by Chlorine Gas Reaction at Various Temperatures (다양한 온도에서 염소가스 반응에 의해 표면 개질된 SiC의 트라이볼로지 특성평가)

  • Bae, Heung-Taek;Jeong, Ji-Hoon;Choi, Hyun-Ju;Lim, Dae-Soon
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.515-519
    • /
    • 2009
  • Carbon layers were fabricated on silicon carbide by chlorination reaction at temperatures between $1000^{\circ}C$ and $1500^{\circ}C$ with $Cl_2/H_2$ gas mixtures. The effect of reaction temperature on the micro-structures and tribological behavior of SiC derived carbon layer was investigated. Tribological tests were carried out ball-on-disk type wear tester. Carbon layers were characterized by X-ray diffractometer, Raman spectroscopy and surface profilometer. Both friction coefficients and wear rates were maintained low values at reaction temperature up to $1300^{\circ}C$ but increased suddenly above this temperature. Variation of surface roughness as a function of reaction temperature was dominant factor affecting tribological transition behavior of carbon layer derived from silicon carbide at high temperature.

A Study on Microstructure and Tribological Behavior of Superhard Ti-Al-Si-N Nanocomposite Coatings (초고경도 Ti-Al-Si-N 나노복합체 코팅막의 미세구조 및 트라이볼로지 거동에 관한 연구)

  • Heo, Sung-Bo;Kim, Wang Ryeol
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.5
    • /
    • pp.230-237
    • /
    • 2021
  • In this study, the influence of silicon contents on the microstructure, mechanical and tribological properties of Ti-Al-Si-N coatings were systematically investigated for application of cutting tools. The composition of the Ti-Al-Si-N coatings were controlled by different combinations of TiAl2 and Ti4Si composite target powers using an arc ion plating technique in a reactive gas mixture of high purity Ar and N2 during depositions. Ti-Al-Si-N films were nanocomposite consisting of nanosized (Ti,Al,Si)N crystallites embedded in an amorphous Si3N4/SiO2 matrix. The instrumental analyses revealed that the synthesized Ti-Al-Si-N film with Si content of 5.63 at.% was a nanocomposites consisting of nano-sized crystallites (5-7 nm in dia.) and a three dimensional thin layer of amorphous Si3N4 phase. The hardness of the Ti-Al-Si-N coatings also exhibited the maximum hardness value of about 47 GPa at a silicon content of ~5.63 at.% due to the microstructural change to a nanocomposite as well as the solid-solution hardening. The coating has a low friction coefficient of 0.55 at room temperature against an Inconel alloy ball. These excellent mechanical and tribological properties of the Ti-Al-Si-N coatings could help to improve the performance of machining and cutting tool applications.

Assessment of Tribological Characteristics of CoCrW and CoCrMo Alloys (CoCrW와 CoCrMo 합금의 트라이볼로지 특성 평가)

  • Kwon, Dong-Gyun;Oh, Se-Jin;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.38 no.4
    • /
    • pp.162-169
    • /
    • 2022
  • Cobalt-chromium (CoCr)-based alloys have been used for wear applications because of their excellent mechanical properties and wear resistance. With growing concern over environmental problems, CoCr alloys are expected to be used for various tribological applications in degraded lubrication states. To expand the applicability of the materials, data should be accumulated across a broad spectrum of experimental parameters. In this work, the friction and wear characteristics of cobalt-chromium-tungsten (CoCrW) and cobalt-chromium-molybdenum (CoCrMo) alloys are investigated experimentally. The tests are conducted using a pin-on-reciprocating-plate tribotester in dry lubrication. CoCrW and CoCrMo are used as pin and plate materials to investigate the effect of the counter material. The results show that the friction coefficients between CoCrW and CoCrMo generally range from 0.4 to 0.5. The friction coefficient between the CoCrW pin and plate is found to be slightly small. However, the total wear between the CoCrW pin and plate is found to be the largest. In contrast, the total wear between the CoCrW pin and plate is relatively small. Furthermore, CoCrW may cause a faster wear progression of CoCrMo, especially for the case in which CoCrMo is used as the pin material. The results of this work provide a better understanding of the tribological properties of CoCrW and CoCrMo alloys. In addition, this work provides a practical guideline for the use of CoCrW and CoCrMo from the tribological design viewpoint.

Friction and wear characteristics during sliding of ${ZrO}_{2}, {Si}_{3}{N}_{4}$ and SiC with SiC, AISI 4340 and bronze under dry and lubricated condition (세라믹 ${ZrO}_{2}, {Si}_{3}{N}_{4}$ 및 SiC를 SiC, AISI 4340 및 청동으로 윤활 및 건조조건에서 미끄름시험하였을 때의 마찰 및 마멸 거동)

  • 강석춘
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.404-410
    • /
    • 1989
  • Friction and wear tests were conducted with several different ceramics sliding against ceramic and metal couples with and without lubricant in a two disk type sliding machine. The purpose was to know the tribological properties of ceramics. With very different physical and chemical properties of ceramics compared to metal, the tribological properties of ceramics should be defined in detail. Among them, the wear and friction with same or different couple is very important. Also the lubrication of ceramic is one of the major area to be studied. From this research, SiC, SI$_{3}$N$_{4}$ and ZrO$_{2}$ were slid against SiC, AISI 4340 and bronze under various sliding condition. It was found that the friction and wear of ceramics are strongly dependent on the sliding condition. For unlubricated sliding against SiC, ZrO$_{2}$ shows low wear and friction coefficient over wide lange of load, but with lubricated sliding, SiC shows better performance whatever lubricants were used. Also the effect of lubricant depended upon the material properties of sliding pairs. The general tribological properties of ceramics were not correlated with chattering and noise at low load but it could be reduced or avoided effectively by using lubricants. SiC and Si$_{3}$N$_{4}$ slid against SiC have transition from mild to severe wear at high load but ZrO$_{2}$-SiC and SiC-steel have not. Wear debris formed on the contact area of SiC couples was main cause of the initiation of transition. At high speed, only ZrO$_{2}$ sliding against SiC has transition of wear by low thermal conductivity.

Microstructure, Mechanical and Wear Properties of Hot-pressed $Si_3N_4-TiC$ Composites

  • Hyun Jin Kim;Soo Whon Lee;Tadachika Nakayama;Koichi Niihara
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.317-323
    • /
    • 1999
  • Si3N4-TiC composites have been known as electrically conductive ceramics. $Si_3N_4-TiC$ composites with 2 wt% $Al_2O_3$ and 4 wt% $Y_2O_3$ were hot pressed in $N_2$ environment. The mechanical properties including hardness, fracture toughness, and flexural strength and tribological properties were investigated as a function of TiC content. $Si_3N_4-40$ vol% TiC composite was hot pressed at $1,750^{\circ}C$, $1,800^{\circ}C$, and $1,850^{\circ}C$ for 1, 3 and 5 hours in $N_2$ gas. Mechanical and tribolgical properties depended on microstructures, which were controlled by hte TiC content, hot press temperature, and hot press holding time. However, mechanical properties and tribological behaviors were degraded by the chemical reaction between TiC and N. The chemically reacted products such as TiCN, SiC, and $SiO_2$ were detered by the X-ray diffraction analysis.

  • PDF

Role of Charges of the Surface-grafted Polymer Chains for Aqueous Lubrication at a Nonpolar Interface

  • Ron, Troels;Madsen, Jan Busk;Nikorgeorgos, Nikolaos;Lee, Seunghwan
    • Tribology and Lubricants
    • /
    • v.30 no.5
    • /
    • pp.247-255
    • /
    • 2014
  • Charged polymer chains, i.e., polyelectrolytes, are known to show superior aqueous lubricating properties compared to those of neutral polymer chains, especially in brush conformation. This is primarily because of the incorporation of a large amount of counterions within the polymer layers and the consequently increased osmotic pressure. However, this effect is active only when the polymer chains remain immobilized even under tribostress, which is not realistic for high-contact pressure tribological applications, especially when they are irreversibly immobilized on tribopair surfaces. In contrast, with free polymers, which can be included as surface-active additives in the base lubricant (water), long-term lubricating performance based on "self-healing" properties is readily expected. In order to assess whether the superior aqueous lubricating properties of polyelectrolyte chains are valid for free polymers too, this study reviews recent studies on the tribological properties of many charged biopolymer and synthetic copolymers at a nonpolar, hydrophobic interface. In contrast to the irreversibly immobilized polyelectrolyte chains, free polyelectrolyte chains show inferior aqueous lubricating properties compared to their neutral counterparts owing to charge accumulation and the consequently impeded surface adsorption on the nonpolar surface. Nevertheless, bovine submaxillary mucin (BSM), a representative biopolymer, shows a sufficiently effective surface adsorption and aqueous lubricating capabilities even at neutral pH without losing the polyanionic characteristics.

TRIBOLOGICAL PROPERTIES OF BIODEGRADABLE LUBRICATING OILS IN FOUR-BALL TEST

  • Nadano, H.;Nakasako, M.;Kohno, M.;Minami, I.;Noda, Y.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.369-370
    • /
    • 2002
  • To clarify the tribological properties of biodegradable lubricating oils, the four-ball tests were carried out under dip-feed lubrication using a Soda-type four-ball machine. The test balls were lubricated with soybean oil, rapeseed oil, corn oil and turbine oil. From the tests, the coefficient of friction for all the test balls lubricated with biodegradable lubricating oils was lower than that for the test ball lubricated with turbine oil. Further, from the calculation of the pV value, it was clear that the seizure resistance for all the test balls lubricated with biodegradable lubricating oils was higher than that for the test ball lubricated with turbine oil.

  • PDF