DOI QR코드

DOI QR Code

초고경도 Ti-Al-Si-N 나노복합체 코팅막의 미세구조 및 트라이볼로지 거동에 관한 연구

A Study on Microstructure and Tribological Behavior of Superhard Ti-Al-Si-N Nanocomposite Coatings

  • 허성보 (한국생산기술연구원 첨단하이브리드생산기술센터) ;
  • 김왕렬 (한국생산기술연구원 첨단하이브리드생산기술센터)
  • Heo, Sung-Bo (Advanced Hybrid Production Technology Center, Korea Institute of Industrial Technology) ;
  • Kim, Wang Ryeol (Advanced Hybrid Production Technology Center, Korea Institute of Industrial Technology)
  • 투고 : 2021.10.05
  • 심사 : 2021.10.30
  • 발행 : 2021.10.31

초록

In this study, the influence of silicon contents on the microstructure, mechanical and tribological properties of Ti-Al-Si-N coatings were systematically investigated for application of cutting tools. The composition of the Ti-Al-Si-N coatings were controlled by different combinations of TiAl2 and Ti4Si composite target powers using an arc ion plating technique in a reactive gas mixture of high purity Ar and N2 during depositions. Ti-Al-Si-N films were nanocomposite consisting of nanosized (Ti,Al,Si)N crystallites embedded in an amorphous Si3N4/SiO2 matrix. The instrumental analyses revealed that the synthesized Ti-Al-Si-N film with Si content of 5.63 at.% was a nanocomposites consisting of nano-sized crystallites (5-7 nm in dia.) and a three dimensional thin layer of amorphous Si3N4 phase. The hardness of the Ti-Al-Si-N coatings also exhibited the maximum hardness value of about 47 GPa at a silicon content of ~5.63 at.% due to the microstructural change to a nanocomposite as well as the solid-solution hardening. The coating has a low friction coefficient of 0.55 at room temperature against an Inconel alloy ball. These excellent mechanical and tribological properties of the Ti-Al-Si-N coatings could help to improve the performance of machining and cutting tool applications.

키워드

과제정보

본 논문은 한국생산기술연구원 기관주요사업 "해수 담수/수전해를 이용한 그린소수 생산시스템 및 핵심부품 개발(KITECH JA-21-0007)"의 지원으로 수행한 연구입니다.

참고문헌

  1. P. H. Mayrhofer, C. Mitterer, L. Hultman, H. Clemens, Microstructural Design of Hard Coatings, Progress in Materials Science 51 (2006) 1032-1114. https://doi.org/10.1016/j.pmatsci.2006.02.002
  2. J. M. Schneider, S. Rohde, W. D. Sproul, A. Matthews, Recent developments in plasma assisted physical vapour deposition, J. Physics D: Applied Physics 33 (2000) 173-186.
  3. D. Merche, N. Vandencasteele, F. Reniers, Atmospheric plasmas for thin film deposition: A critical review, Thin Solid Films 520 (2012) 4219-4236. https://doi.org/10.1016/j.tsf.2012.01.026
  4. N. A. G. Ahmed, Ion plating Technology Developments and Application, (1987) 103.
  5. A. Matthews, D. G. Teer, Deposition of Ti-N compounds by thermionically assisted triode reactive ion plating, Thin Solid Films 72 (1980) 541-549. https://doi.org/10.1016/0040-6090(80)90545-3
  6. H. J. Kim, M. S. Joun, N. K. Kim, Effect of Furnace Temperature on the Property of TiN-Coated Layer on Hard Metal by Arc Ion Plating, J. Kor. Soc. Manufacturing Tech. Eng. 15 (2006) 49-55.
  7. C. He, J. Zhang, G. Song, G. Ma, Z. Du, J. Wang, D. Zhao, Microstructure and mechanical properties of reactive sputtered nanocrystalline (Ti, Al) N films, Thin Solid Films 584 (2015) 192-197. https://doi.org/10.1016/j.tsf.2014.12.027
  8. L. Chen, Z. Pei, J. Xiao, J. Gong, C. Sun, TiAlN/Cu Nanocomposite Coatings Deposited by Filtered Cathodic Arc Ion Plating, J. Mater. Sci. 33 (2017) 111-116.
  9. Y. X. Xu, L. Chen, Y. Du, Structure and thermal properties of TiAlN/CrN multilayered coatings with various modulation ratios, Surf. Coat. Technol. 304 (2016) 512-518. https://doi.org/10.1016/j.surfcoat.2016.07.055
  10. F. Pei, Y. Xu, L. Chen, Y. Du, H. K. Zou, Structure, mechanical properties and thermal stability of Ti1-xSixN coatings, Ceram. Int. 44 (2018) 15503-15508. https://doi.org/10.1016/j.ceramint.2018.05.210
  11. I-W Park, S. R. Choi, M. H. Lee, K. H. Kim, Effects of Si addition on the microstructural evolution and hardness of Ti-Al-Si-N films prepared by the hybrid system of arc ion plating and sputtering techniques, J. Vac. Sci. Technol. A 21(4) (2003) 895-899.
  12. S.B. Heo, M. S. Lee, H. D. Kim, W. R. Kim, J. H. Kim, I-W. Park, D. Kim, Oxidation Behavior of Ti-Al-Si-N-O Nanocomposite Films Deposited by Filtered Arc Ion Plating Technique, J. Nanosci. Nanotechnol. 19 (2019) 4195-4198. https://doi.org/10.1166/jnn.2019.16274
  13. Q. Ma, L. Li, Y. Xu, J. Gu, L. Wang, Y. Xu, Effect of bias voltage on TiAlSiN nanocomposite coatings deposited by HiPIMS, Appli. Surf. Sci. 392 (2017) 826-833. https://doi.org/10.1016/j.apsusc.2016.09.028
  14. L. Zhu, M. Hu, W. Ni, Y. Liu, High temperature oxidation behavior of Ti0.5Al0.5N coating and Ti0.5Al0.4Si0.1N coating, Vacuum 86 (2012) 1795-1799. https://doi.org/10.1016/j.vacuum.2012.04.013
  15. H. Chen, B.C. Zheng, Y.X. Ou, M.K. Lei, Microstructure and thermal conductivity of Ti-Al-Si-N nanocomposite coatings deposited by modulated pulsed power magnetron sputtering, Thin solid films 693 (2020) 137680. https://doi.org/10.1016/j.tsf.2019.137680
  16. I. W. Park, J.H. Suh, C.G. Park, M.H.Lee, K. H. Kim, Role of Amorphous Si3N4 on the Microhardness in Ti-Al-Si-N Nanocomposite Film, J. Kor. Phys. Soc. 42(6) (2003) 783.
  17. K. Singh, P. K. Limaye, N. L. Soni, A. K. Grover, R. G. Agrawal, A. K. Suri, Wear studies of (Ti-Al)N coatings deposited by reactive magnetron sputtering, Wear 258 (2005) 1813-1824. https://doi.org/10.1016/j.wear.2004.12.023
  18. S. R. Choi, S. Y. Yoon, K. H. Kim, Superhard Ti-Si-N coatings by a hybrid system of arc ion plating and sputtering techniques, Surf. Coat. Technol. 298 (2002) 243-248.
  19. J. Patscheider, T. Zrhnder, M. Diserens, Structure-performance relations in nanocomposite coatings, Surf. Coat. Technol. 146-147 (2001) 201-208. https://doi.org/10.1016/S0257-8972(01)01389-5
  20. J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy, Physical Electronics Inc. Minnesota 238 (1995) 238-240.
  21. S. Veprek, S. Reiprich, L. Shizhi, Superhard nanocrystalline composite materials: The TiN/Si3N4 system, Appl. Phys. Lett. 66 (20) (1995) 2640. https://doi.org/10.1063/1.113110
  22. S. Veprek, S. Reiprich, A concept for the design of novel superhard coatings, Thin Solid Films 268 64 (1995) 64-71. https://doi.org/10.1016/0040-6090(95)06695-0
  23. J. H. Jang, S. B. Heo, W. R. Kim, J. H. Kim, D. G. Nam, K. H. Kim, I. M. Park, I-W. Park, Oxidation and tribological behavior of Ti-B-C-N-Si nanocomposite films deposited by pulsed unbalanced magnetron sputtering, J. Nanosci. Nanotechnol. 18 (2018) 2100-2103. https://doi.org/10.1166/jnn.2018.14935
  24. P. Karvankova, M. G. J. Veprek-Heilman, D. Azinovic, S. Veprek, Properties of superhard nc-TiN/a-BN and nc-TiN/a-BN/a-TiB2 nanocomposite coatings prepared by plasma induced chemical vapor deposition, Surf. Coat. Tech. 200 (2006) 2978-2989. https://doi.org/10.1016/j.surfcoat.2005.01.003
  25. X. Chen, Y. Du, Y. W. Chung, Commentary on using H/E and H3/E2 as proxies for fracture toughness of hard coatings, Thin solid films 668 (2019) 137265.
  26. S.B. Heo, J. H. Kim, I-W. Park, 첨단하이브리드 나노복합체 표면재료의 기계적 특성 이해, J. KSME 57(5) (2017) 42-47.
  27. I-W. Park, S. R. Choi, j. H. Suh, C. G. Park, K. H. Kim, Deposition and mechanical evaluation of superhard Ti-Al-Si-N nanocomposite films by a hybrid coating system, Thin solid films 30 (2004) 443-448.