• Title/Summary/Keyword: triblock copolymer surfactant

Search Result 8, Processing Time 0.028 seconds

Surfactant-Free Microspheres of Poly(${\varepsilon}-caprolactone$)/Poly(ethylene glycol)/Poly(${\varepsilon}-caprolactone$) Triblock Copolymers as a Protein Carrier

  • Sun, Sang-Wook;Jeong, Young-Il;Kim, Sung-Ho
    • Archives of Pharmacal Research
    • /
    • v.26 no.6
    • /
    • pp.504-510
    • /
    • 2003
  • The aim of this study is to prepare biodegradable microspheres without the use of surfactants or emulsifiers for a novel sustained delivery carriers of protein drugs. A poly($\varepsilon$-caprolactone)/poly(ethylene glycol)/poly($\varepsilon$-caprolactone) (CEC) triblock copolymer was synthesized by the ring-opening of $\varepsilon$-caprolactone with dihydroxy poly (ethylene glycol) to prepare surfactant-free microspheres. When dichloromethane (DCM) or ethyl formate (EF) was used as a solvent, the formation of microspheres did not occur. Although the microspheres could be formed prior to lyophilization under certain conditions, the morphology of microspheres was not maintained during the filtration and lyophilization process. Surfactant-free microspheres were only formed when ethyl acetate (EA) was used as the organic solvent and showed good spherical micro-spheres although the surfaces appeared irregular. The content of the protein in the micro-sphere was lower than expected, probably because of the presence of water channels and pores. The protein release kinetics showed a burst release until 2 days and after that sustained release pattern was showed. Therefore, these observations indicated that the formation of microsphere without the use of surfactant is feasible, and, this the improved process, the protein is readily incorporated in the microsphere.

Surfactant-free microspheres of poly($\alpha$-caprolactone)/poly(ethylene glycol)/poly($\varepsilon$-caprolactone) triblock copolymers as a novel protein carriers

  • Sun, Sang-Wook;Jeong, Young-Il;Jung, Sun-Woong;Kim, Sung-Ho
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.408.2-409
    • /
    • 2002
  • The aim of this study is to prepare biodegradable microspheres without use of any kind of surfactants or emulsifiers for a novel sustained delivery carriers of protein drugs. Poly(e-caprolactone)/poly(ethylene glycol)/poly(e-caprolactone) (CEC) triblock copolymer was synthesized by ring-opening of e-caprolactone with dihydroxy poly(ethylene glycol) and was used to make surfactant-free microspheres. (omitted)

  • PDF

Epoxidation of Styrene using Nanosized γ-Al2O3/NiO Heterogeneous Catalyst Derived from the P123 Surfactant

  • Son, Boyoung;Jung, Miewon
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.423-426
    • /
    • 2012
  • $Al_2O_3$/NiO powder was obtained through hydrolysis-condensation reactions and thermal treatments. An organic additive, triblock copolymer surfactant P123, was added to the starting materials to control the surface area and morphology. The synthesized powder was characterized by X-ray diffractometry (XRD), field-emission scanning electron microscopy (FE-SEM) and a Brunner-Emmett-Teller surface analysis (BET). The heterogeneous catalytic activity of this powder was applied to an epoxidation reaction of styrene and was monitored using a gas chromatograph with mass spectrophotometry (GC/MS).

Preparation and Optical Characterization of Mesoporous Silica Films with Different Pore Sizes

  • Bae, Jae-Young;Choi, Suk-Ho;Bae, Byeong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1562-1566
    • /
    • 2006
  • Mesoporous silica films with three different pore sizes were prepared by using cationic surfactant, non-ionic surfactant, or triblock copolymer as structure directing agents with tetramethylorthosilicate as silica source in order to control the pore size and wall thickness. They were synthesized by an evaporation-induced self-assembly process and spin-coated on Si wafer. Mesoporous silica films with three different pore sizes of 2.9, 4.6, and 6.6 nm and wall thickness ranging from $\sim$1 to $\sim$3 nm were prepared by using three different surfactants. These materials were optically transparent mesoporous silica films and crack free when thickness was less than 1 m m. The photoluminescence spectra found in the visible range were peaked at higher energy for smaller pore and thinner wall sized materials, consistent with the quantum confinement effect within the nano-sized walls of the silica pores.

Effect of Imidazole and Surfactant on the Opto-Electrical Properties of PEDOT Thin Films via Vapor Phase Polymerization (이미다졸과 계면활성제가 기상중합법으로 제조된 PEDOT 박막의 광-전기적 특성에 미치는 영향)

  • Khadka, Roshan;Yim, Jin-Heong
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.461-467
    • /
    • 2015
  • This paper reports the combined effects of the triblock copolymer surfactant poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol) (PEG-PPG-PEG) and imidazole on the opto-electrical and mechanical properties of poly(3,4-ethylenedioxythiophene) (PEDOT)-based thin films prepared via vapor phase polymerization (VPP) using ferric p-toluenesulfonate as a catalyst. Various PEDOT-based thin films were synthesized using PEG-PPG-PEG and imidazole alone and in combination to compare and correlate their effects on film properties. The improved conductivity of the PEDOT films was higher than $1300S{\cdot}cm^{-1}$ when the surfactant and imidazole were used together. The PEG-PPG-PEG chain length was also varied to identify the best conditions for the VPP-based preparation of PEDOT thin films.

Development of Water-Resistant O/W Emulsion-Typed Sunscreening Cosmetics through Triblock Polymeric Surfactant-Mediated Re-emulsification Inhibition (삼중블록 고분자 계면활성제의 재유화 억제 기능을 이용한 지속내수성 O/W 에멀젼형 자외선 차단용 화장품 개발)

  • Lee, Ji Hyun;Hong, Sung Yun;Lee, Jin Yong;An, So Youn;Lee, Hyo Jin;Kim, Sung Yong;Lee, Jun Bae;Kim, Jin Woong;Shin, Kyounghee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.2
    • /
    • pp.199-208
    • /
    • 2019
  • This study reports water-resistant oil-in-water (O/W) emulsion-based sunscreening formulations prepared using a poly(ethylene glycol)-poly(${\varepsilon}$-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG) triblock polymeric surfactant. As a result of a variety of outdoor recreational activities such as swimming and hiking, consumer needs for development of advanced water-resistant sunscreen formulations are increasing. Water-resistant sunscreens are mostly based on water-in-oil (W/O) emulsions, because they should not be wiped off by water or sweat. However, the W/O emulsion formulations have a disadvantage in that the feeling of use is oily and difficult to remove. On the other hand, the O/W emulsion formulations are excellent in achieving the better skin feel as well as the easier removal. However, it is difficult to provide the O/W emulsion formulations with the water-repelling performance, since re-emulsification likely occurs upon getting touch with water. To solve this problem, this study proposes a O/W emulsion-based sunscreen formulation, a triblock polymeric surfactant having relatively high interfacial tension HLB value (~ 10). This allows the sunscreen formulations to exhibit the improved water repellence function by preventing their re-emulsification. The sunscreen formation system prepared in this study would be useful for diversification of functional sunscreen products, taking advantages of its excellent emulsion stability, UV protection performance, long lasting water-resistant function and selective cleansing effect with only foam cleanser.

Rare-Earth Metal Complex-Functionalized Mesoporous Silica for a Potential UV Sensor (잠재적인 UV 센서를 위한 희토류 금속착물이 기능화된 메조다공성 실리카)

  • Sung Soo Park;Mi-Ra Kim;Weontae Oh;Yedam Kim;Yeeun Lee;Youngeon Lee;Kangbeom Ha;Dojun Jung
    • Journal of Adhesion and Interface
    • /
    • v.24 no.4
    • /
    • pp.136-142
    • /
    • 2023
  • In this study, TEOS was used as a silica source, and a triblock copolymer (P123) was used as a template to produce mesoporous silica with a well-ordered hexagonal mesopore array through a self-assembly method and hydrothermal process under acidic condition. (Surfactant-extracted SBA-15). Surfactant-extracted SBA-15 showed the particle shape of a short rod with a size of approximately 980 nm. The surface area and pore diameter were 730 m2g-1 and 70.8 Å, respectively. Meanwhile, aminosilane (3-aminopropyltriethoxysilane, APTES) was grafted into the mesopores using a post-synthesis method. Mesoporous silica (APTES-SBA-15) modified with aminosilane had a well-ordered pore structure (p6mm) and well-maintained the particle shape of short rods. The surface area and pore diameter of APTES-SBA-15 decreased to 350 m2g-1 and 60.7 Å, respectively. APTES-modified mesoporous silica was treated with a solution of rare earth metal ions (Eu3+, Tb3+) to synthesize a mesoporous silica material in which rare earth metal complexes were introduced into the mesopores. (Eu/APTES-SBA-15, Tb/APTES-SBA-15) These materials exhibited characteristic photoluminescence spectra by λex=250 nm. (5D47F5 (543.5 nm), 5D47F4 (583.5 nm), 5D47F3 (620.2 nm) transitions for Tb/APTES-SBA-15; 5D07F0 (577.7 nm), 5D07F1 (592.0 nm), 5D07F2 (614.9 nm), 5D07F3 (650.3 nm) and 5D07F4 (698.5 nm) transitions for Eu/APTES-SBA-15)

Nitrogen and Oxygen Sorption Behaviors of Ruthenium-Substituted SBA 15(Ru-SBA-15) (루테늄이 치환된 SBA-15(Ru-SBA-15)의 질소 및 산소 흡착 거동)

  • Seo, Yoon-Ah;Kim, Hyung Kook;Shin, Jeong Hun;Kim, Il;Ha, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.608-614
    • /
    • 2009
  • In this work, ruthenium substituted SBA-15's(Ru-SBA15's) of various Si/Ru ratios were prepared using a non-ionic triblock copolymer surfactant, $EO_{20}PO_{70}EO_{20}$, as template. We investigated the nitrogen or oxygen adsorption/desorption behaviors of the Ru-SBA-15's for their future applications as catalysts or selective adsorbents, etc. The pore size of the Ru-SBA-15's was determined by both the Barrett-Joyner-Halenda(BJH)($D_{BJH}$) and the Broekhoff-de Boer analysis with a Frenkel-Halsey-Hill isotherm(BdB-FFF) method($D_{BdB-FHH}$). The $D_{BJH}$ and $D_{BdB-FHH}$ of the Ru-SBA-15 having 50/1 ratio of Si/Ru were 3.9 nm and 4.7 nm, respectively. The transmission electron microscope(TEM) image of the Ru-SBA 15 of the Si/Ru mole ratio of 50 showed that the pore size is 4.7 nm, which is consistent with the $N_2$ adsorption results with the BdB-FHH method. The surface area of pores form oxygen adsorption/desorption isotherm was higher than that from the nitrogen adsorption/desorption isotherm by the Brunauer-Emmett-Teller(BET) method, which were respectively $612.7m^2/g$, and $573.3m^2/g$. X-ray diffraction(XRD) patterns and TEM analyses showed that the mesoporous materials possess well-ordered hexagonal arrays.