루테늄이 치환된 SBA-15(Ru-SBA-15)의 질소 및 산소 흡착 거동*

서윤아 · 김형국* · 신정훈 · 김 일 · 하창식[†]

부산대학교 고분자공학과 609-735 부산광역시 금정구 장전동 산 30 *부산대학교 나노정보소재공학과 627-706 경상남도 밀양시 삼랑진읍 청학리 50 (2009년 5월 18일 접수, 2009년 8월 18일 채택)

Nitrogen and Oxygen Sorption Behaviors of Ruthenium-Substituted SBA 15(Ru-SBA-15)

Yoon-Ah Seo, Hyung Kook Kim*, Jeong Hun Shin, Il Kim and Chang-Sik Ha[†]

Department of Polymer Science and Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735, Korea *Department of Nanomaterials Engineering, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup, Miryang-si, Gyeongnam 627-706, Korea (Received 18 May 2009; accepted 18 August 2009)

요 약

본 연구에서는, 비이온성 삼원공중합체 계면활성제인 EO₂₀PO₇₀EO₂₀를 주형으로 사용해, 다양한 Si/Ru 몰 비의 루 테늄이 치환된 SBA-15들(Ru-SBA-15)을 합성하였다. 촉매 또는 선택적 흡착제 등으로써의 응용가능성을 검토하기 위 해 Ru-SBA-15의 질소 또는 산소 흡착/탈착 거동을 조사하였다. Ru-SBA-15의 기공 크기는 Barrett-Joyner-Halenda(BJH) 및 Broekhoff-de Boer/Frenkel-Halsey-Hill isotherm(BdB-FHH) 방법(D_{BdB-FHH})을 이용하여 결정하였다. Si/Ru 비율이 50/1인 Ru-SBA 15의 D_{BdF} D_{Bdb-FHH}는 각각 3.9, 4.7 nm였다. 투과전자현미경(TEM) 관찰에 의해 Si/Ru의 몰비율이 50인 Ru-SBA 15의 기공 크기는 4.7 nm로 나타났고, 이것은 BdB-FHH 방법을 사용한 N₂ 흡착 결과와 일치하였다. 산 소 흡착/탈착 등온선으로부터 얻은 Brunauer-Emmett-Teller(BET) 기공 표면적은 질소의 흡착/탈착 등온선으로부터의 기공 표면적보다 높았는데, 각각 612.7 m²/g, 그리고 573.3 m²/g이었다. X선 회절(XRD) 패턴과 TEM 분석에 의해 본 연구에서 합성한 Ru-SBA-15는 잘 정렬된 육방정계 정렬을 가지는 것을 알 수 있었다.

Abstract – In this work, ruthenium substituted SBA-15's(Ru-SBA15's) of various Si/Ru ratios were prepared using a non-ionic triblock copolymer surfactant, $EO_{20}PO_{70}EO_{20}$, as template. We investigated the nitrogen or oxygen adsorption/desorption behaviors of the Ru-SBA-15's for their future applications as catalysts or selective adsorbents, etc. The pore size of the Ru-SBA-15's was determined by both the Barrett-Joyner-Halenda(BJH)(D_{*BJH*}) and the Broekhoff-de Boer analysis with a Frenkel-Halsey-Hill isotherm(BdB-FFF) method(D_{*BdB-FHH*}). The D_{*BJH*} and D_{*BdB-FHH*} of the Ru-SBA-15 having 50/1 ratio of Si/Ru were 3.9 nm and 4.7 nm, respectively. The transmission electron microscope(TEM) image of the Ru-SBA 15 of the Si/Ru mole ratio of 50 showed that the pore size is 4.7 nm, which is consistent with the N₂ adsorption results with the BdB-FHH method. The surface area of pores form oxygen adsorption/desorption isotherm was higher than that from the nitrogen adsorption/desorption isotherm by the Brunauer-Emmett-Teller(BET) method, which were respectively 612.7 m²/g, and 573.3 m²/g. X-ray diffraction(XRD) patterns and TEM analyses showed that the mesoporous materials possess well-ordered hexagonal arrays.

Key words: Mesoporous Materials, SBA-15, Ruthenium, Nitrogen, Oxygen, Adsorption-Desorption Behavior

1.서 론

기공 크기의 조절이 가능하고, 표면적이 크며, 실리카 벽의 개질 이 용이하다는 점, 등의 특성으로 인해, 메조포러스 물질은 촉매, 분 리, 환경, 센서, 광학 그리고 전기적 물질 설계시 유용한 담지 물질 로 응용이 된다. 게다가, 분말, 필름, 섬유, 그리고 시트 등의 다양한 형태를 가지는 메조포러스 물질이 성공적으로 합성됨으로써 그 응 용성이 더욱 확대되고 있다[1-11].

Zhao 연구팀[12]은 실리카 전구체의 구조화를 위한 주형으로 블 록공중합체를 사용하여 SBA-15라고 불리는 새로운 메조포러스 실 리카의 합성을 보고하였다. 전형적인 고분자 비이온성 계면활성제로 써 polyethylene oxide/polypropylene oxide/ polyethylene oxide(EO-PO-EO) 삼원공중합체를 사용하였다. 육방정계 SBA-15 실리카는 넓

[†]To whom correspondence should be addressed.

E-mail: csha@pusan.ac.kr

^{*}이 논문은 부산대학교 박상욱 교수님의 정년을 기념하여 투고되었습니다.

은 범위의 기공 크기로 합성할 수 있다[12]. 육방정계 SBA-15 실 리카는 MCM-41보다 벽이 두껍고, 안정성이 크다. 이들은 균일 촉매작용 및 불균일 촉매작용의 이점들을 모두 가지기 때문에, 고 정화 전이금속 촉매로서의 이점이 많다. 이들 촉매는 반응 후에 쉽게 제거할 수 있고, 희귀 금속들이 선택성이 향상된 합성을 가 능하게 하는 성질을 이용하여 다양한 반응을 위한 담체로 응용할 수 있다[13].

불균일 촉매로 사용된 다양한 전이금속들 중에서 루테늄은 다양 한 반응의 촉매작용을 하는 것으로 알려져 있다. 알루미나 또는 실 리카로 담지된 루테늄은 질소산화물을 질소분자로 선택적으로 환원 시킨다. 그리고 제올라이트가 치환된 루테늄은 수성가스 이동 반응 에 대한 탁월한 촉매이며, 일산화탄소의 수소첨가반응에 대해 특이 적인 활성이 있다[14,15]. 담지된 루테늄 촉매 류는 자동차 배기가 스 조절에서부터 석탄의 가스화까지 잠재적 효용이 있다. 또한 루 테늄 촉매는 수열처리[16-19]와 Fisher-Tropsch 공정[20,21]과의 관 련성 때문에 다양한 연구의 주제가 되어왔다. 특히, 환원된 류테늄 담지 촉매는 30년 이상 많은 연구가 이루어져 왔다[22-25]. 이 연구 들은 이들 고체의 촉매 특성 및 표면 특성들을 보다 더 잘 이해하 게 해주었다. 초기의 연구는 환원된 루테늄 담지 흡착 특성뿐만 아 니라, 여러 가지 특정한 촉매작용 반응들에 대한 특정 반응 속도가 금속의 분산에 크게 의존하는 것을 보여준다[22-25]. 예를 들어, Lam 과 Sinfelt[22]는, 담지된 루테늄 촉매에 대한 사이클로헥산 전환 연 구에 의해, 금속 입자 크기의 감소에 따라 가수분해에 대한 탈수소 화의 비율이 10배 이상으로 증가함을 밝혔다.

본 연구에서는, 여러 가지 조건하에서 예비가수분해(prehydrolysis) 방법[26,27]을 통해 루테늄이 치환된 SBA-15(Ru-SBA-15)를 합성 하였다. 주형(template)으로써는 비이온성 삼원공중합체 계면활성제 EO₂₀PO₇₀EO₂₀을 사용하였다. 촉매 또는 선택적 흡착제 등으로써 앞 으로의 응용 가능성을 검토하기 위해, 합성된 Ru-SBA-15들의 질소 또는 산소 흡착/탈착 거동을 조사하였다.

2.실 험

2-1. 시약

Tetraethylorthosilicate(TEOS), ruthenium(III) chlorodehydrate(Fw 207.43), poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide)(EO₂₀PO₇₀EO₂₀: EPE, Mw 5800)는 Aldrich에서 구입하였고, 정제 없이 그대로 사용하였다. hydrochloric acid는 Junsei 에서 구입하였으며, 구입한 그대로의 것을 사용하였다.

2-2. 시료 제조

다음과 같이 예비가수분해 방법[26,27]에 의해 TEOS를 이용하여 Ru-SBA15를 만들었다. 삼원공중합체 EO₂₀PO₇₀EO₂₀와 HCI을 각각 주형과 촉매로 사용하였다. 첫 번째 병에 삼원공중합체 2.03 g을 35~40 ℃에서 80 ml 탈이온수에 분산시킨다.

두 번째 병에 10.4 g의 TEOS를 탈이온수에 넣고 2 M의 HCl을 넣으면서 혼합물의 pH가 1 미만이 될 때까지 교반시킨다. 각각의 혼합물을 6시간 동안 교반시킨 뒤 첫 번째 병의 용액을 두 번째 병의 용액에 붓는다. 다양한 농도의 Ru(III)Cl₃·2H₂O를 두 번째 병에 첨 가하고 20시간 동안 교반한다. Si/Ru의 몰 농도는 10, 20, 30, 40, 50 그리고 ∞이다. 겔을 35~40 °C에서 24시간 동안 숙성시키고, 이 어서 80 °C로 24시간 동안 가열한다. 그리고 나서 갈색의 SBA-15 생성물을, 걸러지는 물이 색이 없어질 때까지 반복해서 물로 씻어 내고, 공기 중에서 건조시킨다. 주형은 500 °C에서 6시간 동안 소성 하여 분말로부터 제거한다.

2-3. 측정

CuKα 방사선(λ=1.5406Å)을 X-선 source로 하는, X-선 회절분석 기(XRD; D/MAX-RA, Rigaku Co.)로 메조포러스 물질의 결정 구 조와 방향성을 확인하였다. 회절 패턴으로부터, 우선적인 배향성 (preferred orientation)과 평균 기공 크기를 결정하였다. 메조포러스 물질 구조의 면간 거리는 다음과 같은 Bragg 법칙에 의해 구하였다.

 $\lambda = 2d\sin\theta \tag{1}$

λ는 사용된 X-선 방사선의 파장이고 θ는 피크의 각도, d는 면간 거리이다. KBr 펠렛을 이용하여 대기 중에서 FT-IR 분광기로 분석 하였다. 모든 스펙트럼들은 JAS Co.FT-IF-460 Plus 분광계를 이용 하여 6 mm⁻¹ 분해능 조건에서 평균 17번의 스캔으로 기록하였다.

200 kV에서 작동하는 JEOL 2010 전자현미경으로 TEM 사진을 얻었다. 시료 입자를 가루로 만든 뒤 초음파 진동으로 메탄올에 분 산시켜서 시료를 만들었다. 분말을 침전시키고 구리격자 위에 구멍 뚫린 탄소 file에서 건조시킨다. 150,000 X와 200,000 X 배율로 측 정하였다. 최종 시료의 형태는 HITACHI-4200 주사전자현미경 (SEM)으로 관찰하였다. 시료를 금 박막으로 코팅한 후 유리상 탄소 로 만든 carrier에 올려 측정하였다.

질소 흡착과 탈착 등온선은 Micrometeritics ASAP2010을 사용하 여 77°K에서 측정하였다. 측정에 앞서, 시료를 150 °C에서 24시간 동안 건조시킨다. 비표면적을 계산할 때 BET(Brunauer-Emmett-Teller) 방법을 사용하였다. 기공 크기와 분포는 Frenkel-Halsey-Hill 등온선(BdB-FFF) 방법과 함께 BJH(Barrett-Joyner-Halenda) 방법과 Broechoff-de Boer 분석으로 탈착 등온선을 분석[28]하여 계산하였 다. 산소 흡착-탈착 등온선은 home-made apparatus를 사용하여 측 정하였다. turbo drag pumping station(TSH071, DN63 ISO-K), Baratron gauge sensor(Type 627B.ITBD1B), 146 combination gauge controller (Type 146 C), 그리고 Swagelok's valves들로 기계를 구성하였다. 기 체 방정식과 압력 차이를 이용하여 자동 컴퓨터 프로그램으로 등온 선을 구하였다.

3. 결과 및 고찰

3-1. X-선 회절 패턴

루테늄이 치환된 SBA-15(Ru-SBA-15)는 메조포러스 물질 제조 시, 합성 겔에 류테늄 복합체(Ru(III)Cl₃·3H₂O)를 첨가하여 만든다. Ru-SBA-15는 Fig. 1의 분말 X-선 회절 패턴에 의해 증명된 것처럼 갈색의 잘 정렬된 메조포러스 물질로 얻어진다. Si/Ru 몰 비가 30 일 때, 소성 Ru-SBA15는 86.5Å의 *d*₁₀₀ 간격을 가지는 육방정계 정 렬의 메조포러스 물질의 전형적인 X-선 회절 패턴을 보여준다.

다양한 몰 비의 루테늄이 첨가된 소성 SBA-15와 Ru-SBA-15 시 료는 보고된 패턴[12](Fig. 2)과 일치하게 약 1.0°에서 뾰족한 피크 와 1.7°와 2.0°에서 두 개의 약한 피크를 가지는 전형적인 패턴을 나 타내었다. 그러나, 피크의 세기는 루테늄이 많이 첨가될수록 감소하 는 것으로 관찰되었다.

Fig. 1. X-ray diffraction patterns for Ru-SBA-15 (Si/Ru molar ratio of 30) of (a) as-synthesized and (b) calcined.

Fig. 2. XRD patterns for calcined Ru-SBA-15 Samples with different Si/Ru molar ratios of (a)10 (b)20 (c)30 (d)40 (e)50 (f)∞.

X-선 회절 피크는 단위 셀 계수(a₀)에 해당하는 d₁₀₀ 간격을 가지 는 육방정계 격자구조를 나타내었다. 소성 시료에 대해 계산된 단 위 셀 계수들을 Table 1에 나타내었다. Ru-SBA-15(Si/Ru=10, 20, 30, 40, 50, 그리고 ∞) 시료들에 대한 단위 셀 계수는 SBA-15 시료 의 보고된 값들과 비교하여 낮은 것으로 나타났다.

Fig. 3. FT-IR spectra of calcined Ru-SBA15 samples with different Si/Ru molar ratios of (a)10 (b)20 (c)30 (d)40 (e)50 (f)∞.

3-2. FT-IR 스펙트럼

Fig. 3은 KBr 펠렛을 이용하여 측정한 메조포러스 SBA-15와 Ru-SBA-15의 투과 FT-IR 스펙트럼이다. 1,085와 805 cm⁻¹에서 나타난 흡수는 각각 Si-O-Si와 Si-O-H 신축 진동 피크이고, 463 cm⁻¹ 흡수 는 Si-O-Si 진동 또는 굽힙 진동에 의한 것이다. Ru-SBA-15 시료 의 스펙트럼은 963 cm⁻¹에서 특정 흡수밴드(화살표 표시)를 보여주 며, 이것은 보통 Si-O-Ru 그룹을 나타낸다.

950~970 cm⁻¹ 영역의 흡수밴드는 잘 알려진 대로 루테늄 규산염 의 진동 스펙트럼이며 루테늄 골격의 지문으로 고려되어진다. Ru-SBA-15의 FT-IR 스펙트럼은 1,220 cm⁻¹에서 숄더와 함께 1,087 cm⁻¹ 에서 비대칭 Si-O-Si 신축 진동을 뚜렷이 보여준다. 대칭 신축은 805 cm⁻¹에서 관찰되고, 반면에 463 cm⁻¹에서의 밴드는 Si-O-Si 굽힘 형 태이다. 또한 968 cm⁻¹에서 피크는 결함(defect) 영역으로 인한 Si-OH 진동일 것이다. 그러나, 이 피크들은 Si-OH 그룹과 Ru-O-Si 결 합으로 해석되기도 한다[27]. 정확한 피크 위치는 흡착된 물의 양, 결정 크기 등과 같은 많은 변수에 의존한다. 963 cm⁻¹ 근처에서의 이 밴드는 루테늄이 치환된 SBA-15 시료 모두에서 관찰된다. 보다 정확한 스펙트럼의 해석을 위해서는, Si/Ru의 몰비에 따른 SBA-15 지지체에 치환된 루테늄의 정량적인 연구가 필요하다. 이를 위해 문

Table 1. Comparison of unit cell parameters and pore diameters determined by the BJH and BdB-FHH methods with surface areas determined by BET Method for various Ru-SBA15 materials

Sample (Si/Ru)	Surface Area (m ² /g)	D_{BJH}^{a} (nm)	$\mathrm{D}_{BdB-FHH}^{b}$ (nm)	d ₁₀₀ (Å)	$a_{o}^{c}(A)$	Wall thickness ^d (Å)	Wall thickness ^e (Å)
10	583	4.4	4.7	83.4	96.1	52.1	49.1
20	463	3.0	4.3	76.1	87.9	57.9	44.9
30	519	4.0	4.7	86.5	99.9	59.9	52.9
40	664	3.9	4.8	80.2	92.6	53.6	44.6
50	573	3.9	4.7	89.2	103	64.0	56.0
∞	520	4.7	4.7	89.2	103	56.0	56.0

^aBJH pore size determined at a given relative pressure.

^bBdB-FHH pore size determined by solving eq (2) at a given relative pressure.

^{*c*}Lattice parameter from X-ray diffraction; $a_o = 2/3 * d_{100}$

^dWall thickness= a_o -pore size (D_{BJH})

^eWall thickness=a_o-pore size (D_{BdB-FHH})

화학공학 제47권 제5호 2009년 10월

Fig. 4. TEM image of calcind Ru-SBA-15(Si/Ru=50 mole ratio).

헌들[28,29]을 참조하여 X-ray photoelectron spectroscopy, UV-vis spectroscopy, electron spin resonance spectroscopy나 혹은, wide-angle X-ray diffraction 등을 이용한, 보다 상세한 연구를 수행하여 향후 그 결과를 보고할 것이다.

3-3. 몰폴로지

Si/Ru 50 몰 비로 첨가된 전형적인 Ru-SBA-15의 TEM 현미경사 진은 RuCl₃·3H₂O를 직접 첨가하여도 정렬된 메조포러스 구조가 유 지됨을 잘 보여준다. 이러한 시료들이 균일한 채널의, 고도로 정렬 된 육방정계 배열을 가진 것을 Fig. 4에서 명백하게 볼 수 있다. Si/ Ru 몰 비가 50인 시료의 기공 크기는 고 해상도 TEM 현미경 사진 에 의해 4.7 nm로 밝혀졌는데 이는 X-선 회절과 BdB-FHH 방법의 질소 흡착 실험의 결과와 일치한다. TEM 사진에서, 어두운 영역이 관찰되는데, 이것은 단일층이 겹쳐진 것으로 추측된다. 전형적인 소 성 SBA-15(a)와 Ru-SBA-15(b)(Fig. 5)의 주사전자현미경사진은 불 규칙한 형태의 입자(0.3~0.5 μm) 덩어리를 보여준다. 그리고 이것 은 골격이 모두 규소로만 이루어진 SBA-15에서 자주 관찰되는 worm-like 형태와는 매우 다르다[30].

3-4. 질소 또는 산소 흡착-탈착 거동

Fig. 6은 다양한 Ru-SBA-15 시료에 대한 질소 흡착/탈착 등온선 을 보여준다. IUPAC 분류에 따라서, 등온선은 메조포러스 고체의 전형적인 H₁ 이력 곡선을 나타낸다[31]. 다양한 시료에 대한 비표 면적, D_{BJH}, D_{BDB-FHH}, d₁₀₀, 단위 셀 계수, 그리고 벽 두께 등의 물 리화학적(textural) 계수들을 Table 1에 나타내었다. BET 방법[32]으 로 계산된 SBA-15의 총 비표면적은 ~520 m²/g이다. 게다가, 각 등 온선의 흡착부분은 약 0.48의 상대압력에서 급격한 변화를 보인다. 이는 균일한 기공 안에 모세관 응축의 특징을 나타낸다. 모든 질소

Fig. 5. SEM images of calcined Ru-SBA15 mesoporous materials of different mole ratios of Si/Ru (a)∞ (b)50.

흡착/탈착 등온선은 Type IV 형태이다. 77 K에서 질소 흡착-탈착에 의해 정해지는 Ru-SBA-15들의 BET 표면적과 메조기공 부피는 각 각 462~663.8 m²/g과 0.28~0.68 cm³/g 범위이다. 이것은 일반적인 전이 금속의 증가와 함께 메조기공의 크기가 점차적으로 감소하는 후합성법(post-synthesis approach)에 의해 합성되는 메조포러스 실리카 물질과는 대조적이다. 낮은 상대 압력(P/P⁰ < 0.3)에서 질소 흡착은 마이크로 기공의 존재를 나타내는 것이 아니라 기공 벽에서 질소의 단일층 흡수에 의해 설명된다[33].

변화점의 P/P⁰는 명백히 메조기공의 직경과 관련이 있다. 그리고 이들 단계의 급격한 변화는 메조기공 크기 분포의 균일성을 나타낸 다[34]. 각 등온선 흡착부분의 변화 지점이 완전하게 일치한다는 사 실은 모든 시료들의 기공 크기가 비슷함을 보여준다. 루테늄의 첨 가량이 증가하면, Ru-SBA-15 물질은 비슷한 변화의 등온선을 나타 내지만, 피크의 뾰족함(sharpness)이 감소하고 넓은 P/P⁰ 범위에 걸쳐 낮은 P/P⁰ 값으로 이동한다[33]. Fig. 7에서 기공 크기 분포 곡선은 Si/Ru 비가 30, 40, 50인 시료에 대해 약 3.9 nm의 평균 기공 크기를 보여주지만, Si/Ru 비가 20, 10인 시료는 각각 3.0 nm와 4.4 nm(D_{BJH}) 이다.

Korean Chem. Eng. Res., Vol. 47, No. 5, October, 2009

Fig. 7에서 BJH 기공 크기 분포 곡선은 메조포러스 물질에 대해 폭넓게 사용되어지는 Kelvin 방정식에 기초를 두어 얻어진 것이다 [35-38]. BJH 값은 주로 기공 크기 분포의 변화에 관계 있다. 기공 직경 D_{RIF}의 평균 BJH 값을 Table 1에 나타내었다. 일반적으로 루 테늄 같은 금속 성분이 치환된 메조포러스 물질은 실리카 골격만의 메조포러스 물질에 비해, 기공의 막힘(pore blocking)이나 구조적 결 함 때문에 표면적과 기공의 부피가 줄어드는 경향을 보인다고 보고 되고 있으나[39,40], 기공의 크기와 두께에 대한 영향에 대해서는 명 확히 보고된 바가 없다. 특히 이종 원소(heteroatom)가 치환된 메조 포러스 물질의 경우, 치환된 이종원소의 특성이나 함량은 물론이고, 합성방법에 따라서도, 사용한 물의 함량이나 실리카-금속의 비 등에 따라 구조적 결함이 달라지고 그에 따라 기공의 크기나 표면적 등 이 달라지기 때문에 매우 복잡하다. 합성 중에 발생하는 겔 혼합물 에 부가되는 금속원소의 함량에 따라 겔 혼합물의 pH가 달라지고, 그에 따라 최종 합성되는 메조포러스 물질의 국부적인 메조 구조와 최종적인 구조적 결함이 달라진다고 보고되어 있다[41,42].

BET 방법에 의한 표면적 측정에 때때로 질소 이외의 다른 기체 들도 사용된다. BET 방법이 개발된 초기에는 끓는점에서의 산소 가 표면적 측정에 자주 사용되었다. 그러나 액체 질소를 쉽게 이용 할 수 있는 지금은 산소의 사용이 감소되었다[32]. 냉매체로서 액 화 산소의 사용에 따르는 커다란 위험성과는 별개로, 끓는점(90 K) 의 낮은 온도에서조차 화학 반응 중 화학흡착의 가능성이 완전히 무시될 수는 없다. 90 K에서 액체 밀도로 계산된 산소의 분자면적 은 δο(O₂) =14.1Å²이다[32a]. Brunauer 연구팀은 네 개의 흡착제 (이산화 티탄, 실리카 그리고 카본 블랙을 포함하는 비기공 물질) 에 대해 77.3 K에서 δο(O₂)=14.3Å²과 90 K에서 δο(O₂)=15.4Å²입 을 보였다. 그런데 82.1 K에서 계산된 산소의 분자면적은 δο(O₂)=

Fig. 8과 9는 각각 Ru-SBA-15 메조포러스 물질(Si/Ru=50)의 77 K 에서 흡착되어진 산소와 질소의 BET 플롯을 보여준다. 여기서, n은 흡착물질의 몰, z는 P/P⁰이다. 이 플롯으로부터 612.7m²/g의 산소 표 면적 값을 얻을 수 있다. 이 값은 질소 표면적 값인 573.3m²/g보다 훨 씬 높다. 물론, 낮은 온도이긴 하나 산소가 질소보다 Ru 표면에 더 잘 흡착될 수 있기 때문이긴 하지만, 이 결과는 산소의 분자 면적이

Fig. 8. The BET plot for oxygen adsorbed at 82.1 K. z/n(1-z) is plotted against z; n=amount adsorbed in cm³ (stp) (Ru-SBA15 mesoporous materials of Si/Ru=50 mole ratio).

Fig. 9. The BET plot for nitrogen adsorbed at 77K. z/n(1-z) is plotted against z; n=amount adsorbed in cm³ (STP) (Ru-SBA15 mesoporous materials of Si/Ru=50 mole ratio).

질소의 분자 면적보다 작기 때문이기도 하다. BET 방법은 분자 면 적 16.2Å²을 사용하여 구하였다. 보통은 실리카에 흡착된 질소를 사 용한다. 실리카 위에 흡착된 질소의 분자 면적에 대해 13.5Å²의 더 정확한 값을 대신 사용한다면, 표면적은 실제의 표면적과 훨씬 비슷 해진다. 산소흡착제의 분자 면적은 13.58Å²으로 가정하였다. Si/Ru 50 몰비의 Ru-SBA-15의 표면적의 계산된 값은 위에 언급된 것처럼 612.7 m²/g이다. 아마 이 값은 실리카에 흡착된 질소의 분자 면적에 대한 13.5Å²와 같을 것이다. 다른 흡착제를 사용한 BdB-FHH 방법 은 아직까지 유용하게 응용되지 않고 있다. 이 문제를 해결하기 위 해 잘 정의된 기공 구조를 가지는 다양한 물질에 대한 한층 더 많 은 연구가 요구된다.

가장 좋은 대안은 BJH 방법이다. 그러나 BJH 방법은 흡착된 가 스 층의 두께에 대한 기공 벽의 곡률 영향이 무시되었기 때문에 메 조기공의 크기가 작게 계산된다. Broekhoff와 de Boer은 원통 모양 의 기공에서 모세관 응축에 대해 잘 알려진 Cohan 방정식의 부정 확함을 설명했다[32a]. 여기서 p/p⁰는 상대압력, γ는 흡착물질의 표 면 응력, V_m은 흡착물질의 몰 부피, r은 기공 직경, t는 몇 몇 흡착 등온선에 의해 설명되는 흡착된 가스 층의 통계적인 두께, 그리고 R과 T는 통상의 의미를 가진다. α는 실험상수이다. 아래에 서술된 것처럼, 이 식은 기공의 크기를 정의하는데 물리학적으로 정확한 식 이다.

Frenkel-Halsey-Hill 등온선을 포함한 Broekhoff-de Boer 분석은 식 (2)에 나타내었다[37].

$$\ln \frac{p}{p_0} - \frac{\alpha}{rt^2} = \frac{2\gamma V_m}{RT} \frac{1}{r-t}$$
(2)

흡착 등온선에서 이력 현상을 보이는 원통형 기공을 가진 메조포 러스 물질에 대하여, BJH 방법은 Fig. 6에 보여진 것처럼 Ru-SBA-15에 대한 탈착 등온선의 흡착과 탈착 부분으로부터 기공 직경의 정 확한 값을 제시할 수 있다. 원통형 메니스커스를 통해 모세관 응축 이 발생하는 곳의 압력과 원통형 기공의 크기를 비교한 것을 Fig. 10에 나타내었다. 기공 크기는 BdB-FHH와 BJH 방법을 사용하여 구하였다. 이들 값은 Table 1에 나타내었다. BdB-FHH 방정식으로 계산된 기공 직경은 4.3~4.8 nm 범위에 있고, Si/Ru 몰비에 좌우된

다. BdB-FHH 방법을 사용해 원통형 기공을 계산한 값은 Fig. 4에 있는 TEM 사진으로 측정된 47Å 기공 크기와 잘 일치한다.

루테늄이 치환된 SBA-15 메조포러스 분자체는 큰 유기 분자에 대해 선택적 환원 촉매, 수소첨가 촉매, 그리고 수성가스이동반응 활성 촉매로써 유용할 것이라 기대된다. 이를 위하여 H₂-temperatureprogrammed reduction(TPR) 측정[43,44]을 통한 환원성 고찰에 대 한 상세 연구도 필요할 것으로 생각된다. 또한, 본 연구에서는, 오 직 질소와 산소를 흡착물질로 연구하였다. 하지만, 주어진 흡착 방 법을 사용한 정확한 가스 수착 거동에 대한 결론을 내리기 위해서 는 다른 다양한 가스 흡착물질을 사용한 한층 더 많은 연구가 필요 할 것으로 생각된다.

4. 결 론

주형으로 삼원공중합체를 사용하여 루테늄이 치환된 SBA-15(Ru-SBA-15)를 성공적으로 합성하였다. 흡착제의 표면적과 기공 크기는 각각 BET 방법과 BJH 방법 및 BdB-FHH 방법으로 구하였다. Si/Ru 50의 D_{BH}와 D_{BdB-FHH}는 각각 3.9, 4.7 nm이다. Si/Ru 비가 50인 Ru-SBA-15은 TEM 사진에 의해 기공 크기가 4.7 nm이었다. 이것은 BdB-FHH 방법을 사용한 질소 흡착의 결과와 일치한다. BET 방 법에 의한 산소 흡착/탈착 등온선으로부터 기공의 표면적은 질소 흡착/탈착 등온선으로부터 구한 값보다 더 크며, 각각 612.7, 573.3 m²/g이다. X-선 회절과 TEM 분석에 의해 본 연구에서 얻은 Ru-SBA-15는 잘 정렬된 육방정계 메조포러스 구조를 가짐을 알 수 있었다.

감 사

본 연구는 교육과학기술부가 지원하는 도약연구 사업(No. 2009-0078791), 세계 수준의 연구중심대학(WCU) 육성사업(No.R32-2008-000-10174-0), 한-중 공동연구센터사업(K20807000001-09B1200-00110), 및 두뇌 한국 21사업 연구비의 지원을 받아 수행하였으므로 이에 감사드립니다.

참고문헌

- Liu, A. M., Hidajat, K., Kawi, S. and Zhao, D. Y., "A New Class of Hybrid Mesoporous Materials with Functionalized Organic Monolayers for Selective Adsorption of Heavy Metal Ions," *Chem. Commun*, 1145-1146(2000).
- Feng, X., Fryxell, G. E., Wang, L. Q., Kim, A. Y., Liu, J. and Kemner, K. M., "Functionalized Monolayers on Ordered Mesoporous Supports," *Science*, 276, 923-926(1997).
- Luan, Z., Bae, J. Y. and Kevan, L., "Vanadosilicate Mesoporous SBA-15 Molecular Sieves Incorporated with *N*-Alkylphenothiazines," *Chem. Mater.*, 12, 3202-3207(2000).
- Mercier, L. and Pinnavaia, T. J., "Access in Mesoporous Materials: Advantages of a Uniform Pore Structure in the Design of a Heavy Metal Ion Adsorbent for Environmental Remediation," *Adv. Mater.*, 9, 500-503(1997).
- Moller, K. and Bein, T., "Inclusion Chemistry in Periodic Mesoporous Hosts," *Chem. Mater.*, 10, 2950-2963(1998).
- Fowler, C. E., Lebeau, B. and Mann, S., "Covalent Coupling of an Organic Chromophore into Functionalized MCM-41 Mesophases by Template-Directed Co-Condensation," *Chem. Commun.*, 1825-1826(1998).
- Lim, M. H., Blanford, C. F. and Stein, A. J., "Synthesis and Characterization of a Reactive Vinyl-Functionalized MCM-41: Probing the Internal Pore Structure by a Bromination Reaction," *J. Am. Chem. Soc.*, **119**, 4090-4091(1997).
- Oh, J., Imail, H. and Hirashima, H., "Direct Deposition of Mesoscopically Assembled Dye-Doped Silica Films from Aqueous Solutions of Silicon Alkoxides," *Chem. Mater.*, 10, 1582-1588(1998).
- 9. Wu, C. G. and Bein, T., "Conducting Polyaniline Filaments in a Mesoporous Channel Host," *Science*, **264**, 1757-1579(1994).
- Wu, C. G. and Bein, T., "Conducting Carbon Wires in Ordered, Nanometer-Sized Channels," *Science*, 266, 1013-1015(1994).
- Honma, I. and Zhou, H. S., "Self-Assembling Functional Molecules in Mesoporous Silicate Materials: Optical Properties and Mesophase of Dye-Doped M41S," *Adv. Mater.*, 10, 1532-1536(1998).
- Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G. H., Chmelka, B. F. and Stucky, G. D., "Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores," *Science*, 279, 548-552(1998).
- Balogh, M. and Laszlo, P., "Organic Chemistry Using Clays," Springer-Verlag, Berlin, pp. 77(1993).
- Shelef, M. and Gandhi, H. S., "Ammonia Formation in Catalytic Reduction of Nitric Oxide by Molecular Hydrogen. II. Noble Metal Catalysts," *Ind. Eng. Chem., Pro. Res. Dev.* 11, 393-396(1972).
- Nijs, H., Jacobs, P. A. and Uytterhoeven, J. B., "Chain Llimitation of Fischer-Tropsch Products in Zeolites", J. Chem. Soc. Chem. Commun., 180-181(1979).
- Pecoraro, T. A. and Chianelli, R. R., "Hydrodesulfurization Catalysis by Transition Metal Sulfides," *J. Catal.*, 67, 430-445(1981).
- Mitchell, P. C. H., Scott, C. E., Bonnelle, J. P. and Grimblot, J. G., "Ru/Alumina and Ru-Mo/Alumina Catalysts: An XPS study," *J. Catal.*, **107**, 482-489(1987).
- Kuo, Y.-J., Cocco, R. A. and Tatarchuk, B. J., "Hydrogenation and Hydrodesulfurization over Sulfided Ruthenium Catalysts: II. Impact of Surface Phase Behavior on Activity and Selectivity," *J. Catal.*, **112**, 250-266(1988).

- Kuo, Y.-J. and Tatarchuk, B. J., "Hydrogenation and Hydrodesulfurization over Sulfided Ruthenium Catalysts: I. Catalysts Containing Partial Monolayers of Adsorbed Sulfur," *J. Catal.*, **112**, 229-249(1988).
- Vannice, M. A. and Catal, "The Catalytic Synthesis of Hydrocarbons from Carbon Monoxide and Hydrogen," *Rev-Sci. Eng.*, 14, 153-191(1976).
- Vannice, M. A., "The Catalytic Synthesis of Hydrocarbons from H₂/CO Mixtures over the Group VIII Metals: IV. The Kinetic Behavior of CO Hydrogenation over Ni Catalysts," *J. Catal.*, 44, 152-162(1976).
- Lam, Y. L. and Sinfelt, J. H., "Cyclohexane Conversion on Ruthenium Catalysts of Widely Varying Dispersion," *J. Catal.*, 42, 319-322(1976).
- 23. Dalla Betta, R. A., "Carbon Monoxide Adsorption on Supported Ruthenium," J. Phys. Chem., **79**, 2519-2525(1975).
- Yang, C. H. and Goodwin, J. G., "Particle Size Dependence for CO Chemisorption on Supported Ru Catalysts," *React. Kinet. Catal. Lett.*, 20, 13-18(1982).
- Sayari, A., Wang, H. T. and Goodwin, J. G., "Surface Structure Dependence of Reversible/Weak H₂ Chemisorption on Supported Ru," *J. Catal.*, **93**, 368-374(1985).
- 26. Cui, X., Zin, W. C., Cho, W. J. and Ha, C. S., "Nonionic Triblock Copolymer Synthesis of SBA-15 above the Isoelectric Point of Silica (pH = 2–5)," *Mater. Lett.*, **59**, 2257-2261(2005).
- Newalkar, B. L., Olanrewaju, J. and Komarneni, S., "Direct Synthesis of Titanium-Substituted Mesoporous SBA-15 Molecular Sieve under MicrowaveHydrothermal Conditions," *Chem. Mater.*, 13, 552-557(2001).
- 28. Kim, M. Y., Jung, S. B., Kim, M. G., Yuo, J. S., Park, J. H., Shin, C. H. and Seo, G., "Preparation of Highly Dispersive and Stable Platinum Catalysts Supported on Siliceous SBA-15 Mesoporous Material: Roles of Titania Layer Incorporation and Hydrogen Peroxide Treatment," *Cat. Lett.*, **129**, 194-206(2009).
- Kim, M. Y., You, Y. S., Han, H. S. and Seo, G., "Preparation of Highly Dispersive Platinum Catalysts Impregnated on Titaniaincorporated Silica Support," *Cat. Lett.*, **120**, 40-47(2008).
- Barrett, E. P., Joyner, L. G. and Halenda, P. P., "The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms," *J. Am. Chem. Soc.*, 73, 373-380(1951).
- 31. Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscow, L., Pierotti, R. A., Rouquerol, J. and Siemieniewska, T. "Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity," *Pure Appl. Chem.*, 57, 603-619(1985).
- 32. (a) Gregg, S. J. and Sing, K. S. W., Adsorption, Surface Area and Porosity, Academic Press, London, pp. 2-120(1982), (b) Brunauer, S., Emmett, P. H. and Teller, E., "Adsorption of Gases in Multimolecular Layers," *J. Am. Chem. Soc.*, **60**, 309-319 (1938); (c) Langmuir, I., "The Constitution and Fundamental Properties of Solids

and Liquids, *J. Am. Chem.Soc.*, **38**, 2221-2295(1916); (d) Defay, R., Prigogine I., Bellemans, A. and Everett, D. H., "Surface Tension and Adsorption," Longmans, London, pp. 218(1970).

- Luan, Z., Maes, E. M., Van der Heide, P. A. W., Zhao, D., Zernuszewicz, R. S. and Keven, L., "Incorporation of Titanium into Mesoporous Silica Molecular Sieve SBA-15," *Chem. Mater.*, 11, 3680-3686(1999).
- 34. (a) Broekhoff, J. C. P. and de Boer, J. H., "Studies on Pore Systems in Catalysts : IX. Calculation of Pore Distributions from the Adsorption Branch of Nitrogen Sorption Isotherms in the Case of Open Cylindrical Pores A. Fundamental equations," *J. Catal.*, 9, 8-14(1967); (b) Broekhoff, J. C. P. and de Boer, J. H., "Studies on pore systems in catalysts: X. Calculations of Pore Distributions from the Adsorption Branch of Nitrogen Sorption Isotherms in the Case of Open Cylindrical Pores B. Applications," *J. Catal.*, 9, 15-27(1967).
- 35. Ravikovitch, P. I., Wei, D., Chueh, W. T., Haller, G L. and Neimark, A. V., "Evaluation of Pore Structure Parameters of MCM-41 Catalyst Supports and Catalysts by Means of Nitrogen and Argon Adsorption", J. Phys. Chem. B., 101, 3671-3679(1997).
- 36. Kruk, M., Jaroniec, M. and Sayari, A., In Proceedings of the 12th International Zeolite Conference; edited by Treacy, M. J., Marcus, B. K., Bisher, M. E. and Higgins, J. E., Materials Research Society, Warrendale, PA, pp. 761-766(1999).
- Lukens, W. W., S. W. Jr., Zhao, P. D., Feng, J. and Stucky, G. D., "Evaluating Pore Sizes in Mesoporous Materials: A Simplified Standard Adsorption Method and a Simplified Broekhoff - de Boer Method," *Langmuir*, 15, 5403-5409(1999).
- Kruk, M. and Jaroniec, M., "Characterization of Highly Ordered MCM-41 Silicas Using X-ray Diffraction and Nitrogen Adsorption", *Langmiur*, 15, 5279-5284(1999).
- Aronson, B. J., Blanford, C. F. and Stein, A., "Synthesis, Characterization, and Ion-Exchange Properties of Zinc and Magnesium Manganese Oxides Confined within MCM-41 Channels", *J. Phys. Chem. B*, **104**(3), 449-459(2000).
- Gomez, S., Giraldo, O., Garcés, L. J., Villegas, J. and Suib, S. L., "Synthetic Route for the Incorporation of Manganese Species into the Pores of MCM-48," *Chem. Mater.*, 16, 2411-2417(2007).
- Wahab, M. A. and Ha, C. S., "Ruthenium-Functionalized Hybrid Periodic Mesoporous Organosilicas: Synthesis and Structural Characterization", J. Mater. Chem., 15(4), 508-516(2005).
- Shen, S. C. and Kawi, S., "MCM-41 with Improved Hydrothermal Stability: Formation and Prevention of Al Content Dependent Structural Defects," *Langmuir*, 18(12), 4720-4728(2002).
- Park, J. W. and Seo, G., "IR Study on Methanol-to-Olefin Reaction over Zeolites with Different Pore Structures and Acidities," *Appl. Catal. A-Gen.*, 356, 180-188(2009).
- 44. Kim, M. H., Kim, S. J., Hong, S. B., Seo, G and Uh, Y. S., "Temperature-programmed desorption Study of Molecular Oxygen Adsorbed on MFI-type Zeoloites," *Korean J. Chem. Eng.*, 15, 566-569(1998).

614