• 제목/요약/키워드: triaxial stress

검색결과 494건 처리시간 0.021초

반복전단을 받는 고화 처리토의 강성저하와 일축압축강도 (Stiffness Degradation and Unconfined Strength of the Chemically Grouted Sand Subjected to Cyclic Shear)

  • 권영철;이봉직;배우석
    • 한국지반환경공학회 논문집
    • /
    • 제8권5호
    • /
    • pp.23-29
    • /
    • 2007
  • 약액으로 개량된 지반의 액상화 저항은 약액의 농도에 따라 달라지며 현재는 일축압축강도를 기준으로 농도가 결정되는 것이 일반적이다. 하지만 액상화에 대한 저항력을 나타내는 강성저하율을 적극적으로 평가하여 합리적이고 경제적인 설계를 확립해야 할 필요성이 몇몇 연구자들에 의해 지적되어 왔다. 이에 본 논문에서는 반복전단 삼축압축시험을 이용하여 개량토의 강성저하율을 평가하였으며 이를 바탕으로 약액 농도 산정의 합리성을 검토하였다. 실험결과, 개량토는 유효응력의 감소, 강성의 저하 측면에서 모두 액상화에 대한 저항력을 갖고 있었으며, 설계에서 사용하는 5~6%의 약액 농도보다 적은 2%의 약액 농도에서도 액상화 저항이 향상되었다. 이러한 점을 바탕으로 생각하면, 기존의 일축압축강도를 기준으로 한 약액농도의 설정은 과다설계의 가능성이 있는 것으로 판단되었으며, 결국 과도하게 일축압축강도를 증가 시키지 않고도 강성저하가 방지되며 이를 반영한다면 약액 농도를 보다 합리적으로 줄여 갈 수 있을 것으로 기대한다.

  • PDF

압축성(壓縮性) 모래의 3차원(次元) 변형거동(變形擧動) (Three Dimensional Deformation Behaviour of Compressible Sand)

  • 박병기;정진섭;임성철
    • 대한토목학회논문집
    • /
    • 제10권3호
    • /
    • pp.107-113
    • /
    • 1990
  • 압축성(壓縮性) 모래를 사용하여 주응력(主應力)을 각기 독립적으로 조절할 수 있는 입방체삼축시험(立方體三軸試驗)을 하였다. 그 결과 초기(初期) 변형계수(變形係數)는 b값의 증가와 더불어 증가하고 중간주응력(中間主應力)이 b값이 적을 때는 주변형율간(主變形率間)의 거동(擧動)에 영향을 미치지 못하고 배수(排水) 경우는 b=0.3, 비배수(非排水)경우는 b=0.6 값에서부터 b값이 커질수록 최대주변형율(最大主變形率)(${\varepsilon}_1$) 값이 더 적은 값에서 파괴(破壞)된다. 파괴시(破壞時) 소성변율(塑性變形率) 중분벡터의 방향은 배수조건(排水條件)에 무관하고 직교조건은 3축면(三軸面)에서는 만족되지 않으나 팔면체면(八面體面)에서는 만족되는 재료(材料)임을 알았다.

  • PDF

Experimental study on the mechanical property of coal and its application

  • Jiang, Ting T.;Zhang, Jian H.;Huang, Gang;Song, Shao X.;Wu, Hao
    • Geomechanics and Engineering
    • /
    • 제14권1호
    • /
    • pp.9-17
    • /
    • 2018
  • Brazilian splitting tests, uniaxial compression tests and triaxial compression tests are carried out on the coal samples cored from Shanxi group $II_1$ coal seam of Jiaozuo coal mine, Henan province, China, to obtain their property parameters. Considering the bedding has notable effect on the property parameter of coal, the samples with different bedding angles are prepared. The effects of bedding on the anisotropic characteristics of the coal seam are investigated. A geological geomechanical model is built based on the geology characteristics of the Jiaozuo coal mine target reservoir to study the effects of bedding on the fracture propagations during hydraulic fracturing. The effects of injection pressure, well completion method, in-situ stress difference coefficient, and fracturing fluid displacement on the fracture propagations are investigated. Results show bedding has notable effects on the property parameters of coal, which is the key factor affecting the anisotropy of coal. The hydraulic cracks trends to bifurcate and swerve at the bedding due to its low strength. Induced fractures are produced easily at the locations around the bedding. The bedding is beneficial to form a complicated fracture network. Experimental and numerical simulations can help to understand the effects of bedding on hydraulic fracturing in coalbed methane reservoirs.

밀도와 구속압력이 노상토의 탄성계수에 미치는 영향에 관한 실험적 연구 (An Experimental Study on Effects of Density and Confining Pressure on the Elastic Modulus of Subgrade Soils)

  • 김수일;김문겸;유지형;김철수
    • 대한토목학회논문집
    • /
    • 제8권2호
    • /
    • pp.33-40
    • /
    • 1988
  • 본 연구에서는 밀도와 구속압력이 노상토의 탄성계수에 미치는 영향을 살펴보기 위하여 전국 고속도로로 노상토를 채취분석하여 얻은 전형적인 5가지 노상토 재료에 대하여 함수비, 밀도 및 구속압력을 달리하면서 비압밀 비배수 삼축압축시험을 실시하였다. 삼축압축시험시 unloading-reloading 실험을 수행하여 얻은 응력-변형을 관계로부터 최대탄성계수를 측정하였다. 실험결과 노상토의 탄성거동은 Janbu의 제안식에 잘 부합하였으며, 구속압력으로 표준화된 탄성계수는 건조단위체적중량과 지수함수의 상관관계가 있음을 알 수 있었다. 또한 포화도가 70%이하에서는 함수비가 탄성계수에 영향을 거의 미치지 않음이 밝혀졌다.

  • PDF

관거의 기초 및 뒷채움재로 활용하기 위한 석분의 공학적 특성 (Engineering Characteristics of Crushed Rock for Foundation and Backfill Materials of a Conduit)

  • 문홍득;김대만
    • 한국지반환경공학회 논문집
    • /
    • 제7권6호
    • /
    • pp.67-73
    • /
    • 2006
  • 본 연구에서는 하수관거의 기초나 뒷채움재로 많이 사용되고 있는 기존의 모래를 대체할 재료로써 석분의 적용가능성을 평가하기 위하여 석분재료에 대한 기본적인 물리적, 역학적인 특성실험을 실시하였다. 석분의 입도분포는 모래보다 더 좋은 상태를 나타내며, 다짐실험 결과도 모래보다 강도특성이 좋은 것으로 나타났다. 이러한 실험결과로부터 하수관거의 기초 및 뒷채움재로써 석분은 현장적용성이 우수한 것으로 평가되며, 이를 뒷받침하기 위하여 직접전단시험, 삼축압축시험을 실시하여 강도특성을 분석한 결과 모래의 경우와 유사한 경향을 나타내었다. 석분의 경우 일축압축강도 특성은 시간이 지남에 따라 점차 증가하는 경향을 보이지만 6~7일 경과 후에는 거의 일정한 값을 보이는 것을 알 수 있었다. 이와 같은 실험결과로부터 석분도 하수관거의 기초 및 뒷채움재로 충분히 활용할 수 있는 재료로 평가되었다.

  • PDF

MASW 조사를 통한 사력댐 코어존 동적물성의 평가 (Estimation of Dynamic Characteristics of Core Zone of Rockfill Dam by Multi-channel Analysis of Surface Waves)

  • 이종욱;하익수;오병현
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.860-868
    • /
    • 2008
  • Seismic safety analysis of rockfill dams are consist of the stability analysis as an simplifed method and the dynamic analysis as an detailed method. When high risk dams such as Multi-purpose dams were often applied detailed method by dynamic analysis, dynamic properties of dam materials such as shear modulus are considered as most important factor. Dynamic material properties such as shear modulus had to be investigated by cyclic triaxial test et al. during design and construction stage but these were not conducted because of the condition of domestic seismic design technique. MASW and SASW methods had been applied as a non destructive method to investigate dynamic material properties of existing rockfill dam, has no problems in dam safety at present. These methods were usually performed under the assumptions that the subsurface can be described horizontally homogeneous and isotropic layers. Recent studies(Marwin, 1993, Kim, 2001) showed that surface waves generated through inclined structures have different characteristics from those through a horizontally homogeneous layered model. further Kim et al(2005) and Min and Kim(2006) showed that central core type rockfill dam overestimated the shear wave velocities as increasing the depth through the 3D numerical modelling dut to the effect of outer rockfill and geometrical reasons In this study the results of shear wave velocities of seven rockfill dams form comprehensive facility review, was carried out from 2003 to 2007, were collected and analysed to establish the shear wave velocity distribution characteristics in increasing confining stress in rockfill dams and surface wave velocity ranges in rockfill dam through MASW and the limitation in application are discussed to be utilized as an reference value for dynamic analysis.

  • PDF

Hybrid ANN-based techniques in predicting cohesion of sandy-soil combined with fiber

  • Armaghani, Danial Jahed;Mirzaei, Fatemeh;Shariati, Mahdi;Trung, Nguyen Thoi;Shariati, Morteza;Trnavac, Dragana
    • Geomechanics and Engineering
    • /
    • 제20권3호
    • /
    • pp.191-205
    • /
    • 2020
  • Soil shear strength parameters play a remarkable role in designing geotechnical structures such as retaining wall and dam. This study puts an effort to propose two accurate and practical predictive models of soil shear strength parameters via hybrid artificial neural network (ANN)-based models namely genetic algorithm (GA)-ANN and particle swarm optimization (PSO)-ANN. To reach the aim of this study, a series of consolidated undrained Triaxial tests were conducted to survey inherent strength increase due to addition of polypropylene fibers to sandy soil. Fiber material with different lengths and percentages were considered to be mixed with sandy soil to evaluate cohesion (as one of shear strength parameter) values. The obtained results from laboratory tests showed that fiber percentage, fiber length, deviator stress and pore water pressure have a significant impact on cohesion values and due to that, these parameters were selected as model inputs. Many GA-ANN and PSO-ANN models were constructed based on the most effective parameters of these models. Based on the simulation results and the computed indices' values, it is observed that the developed GA-ANN model with training and testing coefficient of determination values of 0.957 and 0.950, respectively, performs better than the proposed PSO-ANN model giving coefficient of determination values of 0.938 and 0.943 for training and testing sets, respectively. Therefore, GA-ANN can provide a new applicable model to effectively predict cohesion of fiber-reinforced sandy soil.

Indirect measure of shear strength parameters of fiber-reinforced sandy soil using laboratory tests and intelligent systems

  • Armaghani, Danial Jahed;Mirzaei, Fatemeh;Toghroli, Ali;Shariati, Ali
    • Geomechanics and Engineering
    • /
    • 제22권5호
    • /
    • pp.397-414
    • /
    • 2020
  • In this paper, practical predictive models for soil shear strength parameters are proposed. As cohesion and internal friction angle are of essential shear strength parameters in any geotechnical studies, we try to predict them via artificial neural network (ANN) and neuro-imperialism approaches. The proposed models was based on the result of a series of consolidated undrained triaxial tests were conducted on reinforced sandy soil. The experimental program surveys the increase in internal friction angle of sandy soil due to addition of polypropylene fibers with different lengths and percentages. According to the result of the experimental study, the most important parameters impact on internal friction angle i.e., fiber percentage, fiber length, deviator stress, and pore water pressure were selected as predictive model inputs. The inputs were used to construct several ANN and neuro-imperialism models and a series of statistical indices were calculated to evaluate the prediction accuracy of the developed models. Both simulation results and the values of computed indices confirm that the newly-proposed neuro-imperialism model performs noticeably better comparing to the proposed ANN model. While neuro-imperialism model has training and test error values of 0.068 and 0.094, respectively, ANN model give error values of 0.083 for training sets and 0.26 for testing sets. Therefore, the neuro-imperialism can provide a new applicable model to effectively predict the internal friction angle of fiber-reinforced sandy soil.

Mechanical properties of expanded polystyrene beads stabilized lightweight soil

  • Li, Mingdong;Wen, Kejun;Li, Lin;Tian, Anguo
    • Geomechanics and Engineering
    • /
    • 제13권3호
    • /
    • pp.459-474
    • /
    • 2017
  • To investigate the mechanical properties of Expanded Polystyrene (EPS) Beads Stabilized Lightweight Soil (EBSLS), Laboratory studies were conducted. Totally 20 sets of specimens according to the complete test design were prepared and tested with unconfined compressive test and consolidated drained triaxial test. Results showed that dry density of EBSLS ($0.67-1.62g/cm^3$) decreases dramatically with the increase of EPS beads volumetric content, while increase slightly with the increase of cement content. Unconfined compressive strength (10-2580 kPa) increases dramatically in parabolic relationship with the increase of cement content, while decreases with the increase of EPS beads volumetric content in hyperbolic relationship. Cohesion (31.1-257.5 kPa) increases with the increase of cement content because it is mainly caused by the bonding function of hydration products of cement. The more EPS beads volumetric content is, the less dramatically the increase is, which is a result of the cohesion between hydration products of cement and EPS beads is less than that between hydration products of cement and sand particles. Friction angle ($14.92-47.42^{\circ}$) decreases with the increase of EPS beads volumetric content, which is caused by the smoother surfaces of EPS beads than sand grains. The stress strain curves of EBSLS tend to be more softening with the increase of EPS beads content or the decrease of cement content. The shear contraction of EBSLS increases with the increase of $c_e$ or the decrease of $c_c$. The results provided quantitative relationships between physico-mechanical properties of EBSLS and material proportion, and design process for engineering application of EBSLS.

Solidification of uranium mill tailings by MBS-MICP and environmental implications

  • Niu, Qianjin;Li, Chunguang;Liu, Zhenzhong;Li, Yongmei;Meng, Shuo;He, Xinqi;Liu, Xinfeng;Wang, Wenji;He, Meijiao;Yang, Xiaolei;Liu, Qi;Liu, Longcheng
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3631-3640
    • /
    • 2022
  • Uranium mill tailing ponds (UMTPs) are risk source of debris flow and a critical source of environmental U and Rn pollution. The technology of microbial induced calcium carbonate precipitation (MICP) has been extensively studied on reinforcement of UMTs, while little attention has been paid to the effects of MICP on U & Rn release, especially when incorporation of metakaolin and bacillus subtilis (MBS). In this study, the reinforcement and U & Rn immobilization role of MBS -MICP solidification in different grouting cycle for uranium mill tailings (UMTs) was comprehensively investigated. The results showed that under the action of about 166.7 g/L metakaolin and ~50% bacillus subtilis, the solidification cycle of MICP was shortened by 50%, the solidified bodies became brittle, and the axial stress increased by up to 7.9%, and U immobilization rates and Rn exhalation rates decrease by 12.6% and 0.8%, respectively. Therefore, the incorporation of MBS can enhance the triaxial compressive strength and improve the immobilization capacity of U and Rn of the UMTs bodies solidified during MICP, due to the reduction of pore volume and surface area, the formation of more crystals general gypsum and gismondine, as well as the enhancing of coprecipitation and encapsulation capacity.