DOI QR코드

DOI QR Code

Indirect measure of shear strength parameters of fiber-reinforced sandy soil using laboratory tests and intelligent systems

  • Armaghani, Danial Jahed (Institute of Research and Development, Duy Tan University) ;
  • Mirzaei, Fatemeh (Department of Civil Engineering, Bu-Ali Sina University) ;
  • Toghroli, Ali (Department of Civil Engineering, South Tehran Branch, Islamic Azad University) ;
  • Shariati, Ali (Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University)
  • Received : 2020.01.29
  • Accepted : 2020.07.27
  • Published : 2020.09.10

Abstract

In this paper, practical predictive models for soil shear strength parameters are proposed. As cohesion and internal friction angle are of essential shear strength parameters in any geotechnical studies, we try to predict them via artificial neural network (ANN) and neuro-imperialism approaches. The proposed models was based on the result of a series of consolidated undrained triaxial tests were conducted on reinforced sandy soil. The experimental program surveys the increase in internal friction angle of sandy soil due to addition of polypropylene fibers with different lengths and percentages. According to the result of the experimental study, the most important parameters impact on internal friction angle i.e., fiber percentage, fiber length, deviator stress, and pore water pressure were selected as predictive model inputs. The inputs were used to construct several ANN and neuro-imperialism models and a series of statistical indices were calculated to evaluate the prediction accuracy of the developed models. Both simulation results and the values of computed indices confirm that the newly-proposed neuro-imperialism model performs noticeably better comparing to the proposed ANN model. While neuro-imperialism model has training and test error values of 0.068 and 0.094, respectively, ANN model give error values of 0.083 for training sets and 0.26 for testing sets. Therefore, the neuro-imperialism can provide a new applicable model to effectively predict the internal friction angle of fiber-reinforced sandy soil.

Keywords

References

  1. Aghajani, H.F., Salehzadeh, H. and Shahnazari, H. (2015), "Application of artificial neural network for calculating anisotropic friction angle of sands and effect on slope stability", J. Central South Univ., 22(5), 1878-1891. https://doi.org/10.1007/s11771-015-2707-3.
  2. Ahmadi, M.A., Ebadi, M., Shokrollahi, A. and Majidi, S.M.J. (2013), "Evolving artificial neural network and imperialist competitive algorithm for prediction oil flow rate of the reservoir", Appl. Soft Comput., 13(2), 1085-1098. https://doi.org/10.1016/j.asoc.2012.10.009.
  3. Arabnejad Khanouki, M.M., Ramli Sulong, N.H. and Shariati, M. (2010), "Investigation of seismic behaviour of composite structures with concrete filled square steel tubular (CFSST) column by push-over and time-history analyses", Proceedings of the 4th International Conference on Steel & Composite Structures, Sydney, Australia, July.
  4. Arabnejad Khanouki, M.M., Ramli Sulong, N.H. and Shariati, M. (2011), "Behavior of through beam connections composed of CFSST columns and steel beams by finite element studying", Adv. Mater. Res., 168, 2329-2333. http://doi.org/10.4028/www.scientific.net/AMR.168-170.2329.
  5. Armaghani, D.J., Hajihassani, M., Bejarbaneh, B.Y. and Marto, A. (2014), "Indirect measure of shale shear strength parameters by means of rock index tests through an optimized artificial neural network", Measurement, 55, 487-498. https://doi.org/10.1016/j.measurement.2014.06.001.
  6. Armaghani, D.J., Hajihassani, M., Sohaei, H., Mohamad, E.T., Marto, A., Motaghedi, H. and Moghaddam, M.R. (2015). "Neuro-fuzzy technique to predict air-overpressure induced by blasting", Arab. J. Geosci., 8(12), 10937-10950. https://doi.org/10.1007/s12517-015-1984-3.
  7. Armaghani, D.J., Mohamad, E.T., Narayanasamy, M.S., Narita, N. and Yagiz, S. (2017), "Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition", Tunn. Undergr. Sp. Technol., 63, 29-43. https://doi.org/10.1016/j.tust.2016.12.009.
  8. ASTM (2017), Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), ASTM International.
  9. Atashpaz-Gargari, E. and Lucas, C. (2007), "Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition", Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, September.
  10. Ayoub, G., Zaïri, F., Frederix, C., Gloaguen, J.M., Nait-Abdelaziz, M., Seguela, R. and Lefebvre, J.M. (2011), "Effects of crystal content on the mechanical behaviour of polyethylene under finite strains: Experiments and constitutive modelling", Int. J. Plasticity, 27(4), 492-511. https://doi.org/10.1016/j.ijplas.2010.07.005.
  11. Babu, G.S., Vasudevan, A. and Haldar, S.J.G. (2008), "Numerical simulation of fiber-reinforced sand behavior", Geotext. Geomembranes, 26(2), 181-188. https://doi.org/10.1016/j.geotexmem.2007.06.004.
  12. Bejarbaneh, B.Y., Bejarbaneh, E.Y., Fahimifar, A., Armaghani, D.J. and Majid, M.Z.A. (2018), "Intelligent modelling of sandstone deformation behaviour using fuzzy logic and neural network systems", B. Eng. Geol. Environ., 77(1), 345-361. https://doi.org/10.1007/s10064-016-0983-2.
  13. Chen, C., Shi, L., Shariati, M., Toghroli, A., Mohamad, E.T., Bui, D.T. and Khorami, M. (2019), "Behavior of steel storage pallet racking connection-A review", Steel Compos. Struct., 30(5), 457-469. https://doi.org/10.12989/scs.2019.30.5.457.
  14. Consoli, N.C., Casagrande, M.D.T. and Coop, M.R. (2005), "Behavior of a fiber-reinforced sand under large shear strains", Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering: Geotechnology in Harmony with the Global Environment, Osaka, Japan, September.
  15. Daie, M., Jalali, A., Suhatril, M., Shariati, M., Arabnejad Khanouki, M.M., Shariati, A. and Kazemi-Arbat, P. (2011), "A new finite element investigation on pre-bent steel strips as damper for vibration control", Int. J. Phys. Sci., 6(36), 8044-8050. https://doi.org/10.5897/ijps11.1585.
  16. Das, S.K. and Basudhar, P.K.J.E.G. (2008), "Prediction of residual friction angle of clays using artificial neural network", Eng. Geol., 100(3-4), 142-145. https://doi.org/10.1016/j.enggeo.2008.03.001.
  17. Davoodnabi, S.M., Mirhosseini, S.M. and Shariati, M. (2019), "Behavior of steel-concrete composite beam using angle shear connectors at fire condition", Steel Compos. Struct., 30(2), 141-147. https://doi.org/10.12989/scs.2019.30.2.141.
  18. De Blasio, F.V. (2011), Introduction to the Physics of Landslides: Lecture Notes on the Dynamics of Mass Wasting, Springer Science & Business Media.
  19. di Prisco, C. and Nova, R. (1993), "A constitutive model for soil reinforced by continuous threads", Geotext. Geomembranes, 12(2), 161-178. https://doi.org/10.1016/0266-1144(93)90004-8.
  20. Diambra, A. and Ibraim, E. (2014), "Modelling of fibre-cohesive soil mixtures", Acta Geotech., 9(6), 1029-1043. https://doi.org/10.1007/s11440-013-0283-y.
  21. Donaghe, R.T., Chaney, R.C. and Silver, M.L. (1988), Advanced Triaxial Testing of Soil and Rock, ASTM, Philadelphia, Pennsylvania, U.S.A.
  22. Fenton, G.A. and Griffiths, D.V. (2003), "Bearing-capacity prediction of spatially random c $\varphi$ soils", Can. Geotech. J., 40(1), 54-65. https://doi.org/10.1139/t02-086.
  23. Gan, J., Fredlund, D. and Rahardjo, H. (1988), "Determination of the shear strength parameters of an unsaturated soil using the direct shear test", Can. Geotech. J., 25(3), 500-510. https://doi.org/10.1139/t88-055.
  24. Goktepe, A.B. and Sezer, A. (2010), "Effect of particle shape on density and permeability of sands", Proc. Inst. Civ. Eng. Geotech. Eng., 163(6), 307-320. https://doi.org/10.1680/geng.2010.163.6.307.
  25. Gray, D.H. and Al-Refeai, T. (1986), "Behavior of fabric-versus fiber-reinforced sand", J. Geotech. Eng., 112(8), 804-820. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:8(804).
  26. Gray, D.H. and Ohashi, H. (1983), "Mechanics of fiber reinforcement in sand", J. Geotech. Eng., 109(3), 335-353. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:3(335).
  27. Guo, P. (2008), "Modified direct shear test for anisotropic strength of sand", J. Geotech. Geoenviron. Eng., 134(9), 1311-1318. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:9(1311).
  28. Hajihassani, M., Jahed Armaghani, D., Marto, A. and Tonnizam Mohamad, E. (2014), "Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm", B. Eng. Geol. Environ., 74(3), 873-886. https://doi.org/10.1007/s10064-014-0657-x.
  29. Haykin, S. (1999), Neural Networks: A Comprehensive Foundation., Prentice Hall, Upper Saddle River, New Jersey, U.S.A.
  30. Hejazi, S.M., Sheikhzadeh, M., Abtahi, S.M. and Zadhoush, A. (2012), "A simple review of soil reinforcement by using natural and synthetic fibers", Constr. Build. Mater., 30, 100-116. https://doi.org/10.1016/j.conbuildmat.2011.11.045.
  31. Hornik, K., Stinchcombe, M. and White, H. (1989), "Multilayer feedforward networks are universal approximators", Neural Networks, 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8
  32. Hosseinpour, E., Baharom, S., Badaruzzaman, W.H.W., Shariati, M. and Jalali, A. (2018), "Direct shear behavior of concrete filled hollow steel tube shear connector for slim-floor steel beams", Steel Compos. Struct., 26(4), 485-499. https://doi.org/10.12989/scs.2018.26.4.485.
  33. Ismail, M., Shariati, M., Abdul Awal, A.S.M., Chiong, C.E., Sadeghipour Chahnasir, E., Porbar, A., Heydari, A. and Khorami, M. (2018), "Strengthening of bolted shear joints in industrialized ferrocement construction", Steel Compos. Struct., 28(6), 681-690. https://doi.org/10.12989/scs.2018.28.6.681.
  34. Jalali, A., Daie, M., Nazhadan, S.V.M., Kazemi-Arbat, P. and Shariati, M. (2012), "Seismic performance of structures with pre-bent strips as a damper", Int. J. Phys. Sci., 7(26), 4061-4072. https://doi.org/10.5897/IJPS11.1324.
  35. Katebi, J., Shoaei-parchin, M., Shariati, M., Trung, N.T. and Khorami, M. (2019), "Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-019-00780-7.
  36. Kaya, A. and Kwong, J.K. (2007), "Evaluation of common practice empirical procedures for residual friction angle of soils: Hawaiian amorphous material rich colluvial soil case study", Eng. Geol., 92(1-2), 49-58. https://doi.org/10.1016/j.enggeo.2007.03.002.
  37. Kayadelen, C., Gunaydin, O., Fener, M., Demir, A. and Ozvan, A. (2009), "Modeling of the angle of shearing resistance of soils using soft computing systems", Expert Syst. Appl., 36(9), 11814-11826. https://doi.org/10.1016/j.eswa.2009.04.008.
  38. Khalilmoghadam, B., Afyuni, M., Abbaspour, K. C., Jalalian, A., Dehghani, A. and Schulin, R. (2009), "Estimation of surface shear strength in Zagros region of Iran-a comparison of artificial neural networks and multiple-linear regression models", Geoderma, 153(1-2), 29-36. https://doi.org/10.1016/j.geoderma.2009.07.008.
  39. Khorami, M., Alvansazyazdi, M., Shariati, M., Zandi, Y., Jalali, A. and Tahir, M. (2017), "Seismic performance evaluation of buckling restrained braced frames (BRBF) using incremental nonlinear dynamic analysis method (IDA)", Earthq. Struct., 13(6), 531-538. http://doi.org/10.12989/eas.2017.13.6.531.
  40. Khorami, M., Khorami, M., Motahar, H., Alvansazyazdi, M., Shariati, M., Jalali, A. and Tahir, M.M. (2017), "Evaluation of the seismic performance of special moment frames using incremental nonlinear dynamic analysis", Stuct. Eng. Mech., https://doi.org/10.12989/sem.2017.63.2.259.
  41. Khorramian, K., Maleki, S., Shariati, M. and Ramli Sulong, N.H. (2016), "Behavior of tilted angle shear connectors", Plos one, 10(12). https://doi.org/10.1371/journal.pone.0144288.
  42. Khorramian, K., Maleki, S., Shariati, M., Jalali, A. and Tahir, M. (2017), "Numerical analysis of tilted angle shear connectors in steel-concrete composite systems", Steel Compos. Struct., 23(1), 67-85. https://doi.org/10.12989/scs.2017.23.1.067.
  43. Koopialipoor, M., Armaghani, D.J., Haghighi, M. and Ghaleini, E. N. (2017), "A neuro-genetic predictive model to approximate overbreak induced by drilling and blasting operation in tunnels", B. Eng. Geol. Environ., 78(2), 981-990. https://doi.org/10.1007/s10064-017-1116-2.
  44. Koopialipoor, M., Ghaleini, E.N., Haghighi, M., Kanagarajan, S., Maarefvand, P. and Mohamad, E.T. (2018), "Overbreak prediction and optimization in tunnel using neural network and bee colony techniques", Eng. Comput., 35(4), 1191-1202. https://doi.org/10.1007/s00366-018-0658-7.
  45. Li, C. (2005), "Mechanical response of fiber-reinforced soil", Ph.D. Dissertation, University of Texas, Texas, U.S.A.
  46. Li, D., Toghroli, A., Shariati, M., Sajedi, F., Bui, D.T., Kianmehr, P., Mohamad, E.T. and Khorami, M. (2019), "Application of polymer, silica-fume and crushed rubber in the production of Pervious concrete", Smart Struct. Syst., 23(2), 207-214. https://doi.org/10.12989/sss.2019.23.2.207.
  47. Liou, S.W., Wang, C.M. and Huang, Y.F. (2009), "Integrative discovery of multifaceted sequence patterns by frame-relayed search and hybrid PSO-ANN", J. UCS, 15(4), 742-764.
  48. Luo, Z., Sinaei, H., Ibrahim, Z., Shariati, M., Jumaat, Z., Wakil, K., Pham, B.T., Mohamad, E.T. and Khorami, M. (2019), "Computational and experimental analysis of beam to column joints reinforced with CFRP plates", Steel Compos. Struct., 30(3), 271-280. http://doi.org/10.12989/scs.2019.30.3.271.
  49. Maher, M.H. and Gray, D.H.J. (1990), "Static response of sands reinforced with randomly distributed fibers", J. Geotech. Eng., 116(11), 1661-1677. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:11(1661).
  50. Mansouri, I., Shariati, M., Safa, M., Ibrahim, Z., Tahir, M. and Petkovic, D. (2019), "Analysis of influential factors for predicting the shear strength of a V-shaped angle shear connector in composite beams using an adaptive neuro-fuzzy technique", J. Intell. Manuf., 30(3), 1247-1257. https://doi.org/10.1007/s10845-017-1306-6
  51. McCulloch, W.S. and Pitts, W. (1943), "A logical calculus of the ideas immanent in nervous activity", B. Math. Biophys., 5(4), 115-133. https://doi.org/10.1007/BF02478259
  52. Meyers, M.A. (1977), "Discussion of residual strength of shock loaded RMI 38644", Metall. Trans. A, 8(10), 1641-1644. https://doi.org/10.1007/BF02644872.
  53. Michalowski, R.J.G. (2008), "Limit analysis with anisotropic fibre-reinforced soil", Geotechnique, 58(6), 489-501. https://doi.org/10.1680/geot.2008.58.6.489.
  54. Michalowski, R.L. (2004), "Limit loads on reinforced foundation soils", J. Geotech. Geoenviron. Eng., 130(4), 381-390. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:4(381).
  55. Michalowski, R.L. and Cermak, J. (2002), "Strength anisotropy of fiber-reinforced sand", Comput. Geotech., 29(4), 279-299. https://doi.org/10.1016/S0266-352X(01)00032-5.
  56. Milovancevic, M., Marinovic, J.S., Nikolic, J., Kitic, A., Shariati, M., Trung, N.T., Wakil, K. and Khorami, M. (2019), "UML diagrams for dynamical monitoring of rail vehicles", Physica A Stat. Mech. Appl., 531, 121169. https://doi.org/10.1016/j.physa.2019.121169.
  57. Mohammadhassani, M., Akib, S., Shariati, M., Suhatril, M. and Arabnejad Khanouki, M.M. (2014), "An experimental study on the failure modes of high strength concrete beams with particular references to variation of the tensile reinforcement ratio", Eng. Fail. Anal., 41, 73-80. https://doi.org/10.1016/j.engfailanal.2013.08.014.
  58. Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2013), "Identification of a suitable ANN architecture in predicting strain in tie section of concrete deep beams", Struct. Eng. Mech., 46(6), 853-868. http://doi.org/10.12989/sem.2013.46.6.853.
  59. Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2014), "An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups", Smart Struct. Syst., 14(5), 785-809. http://doi.org/10.12989/sss.2014.14.5.785.
  60. Monjezi, M., Khoshalan, H.A. and Razifard, M. (2012), "A neuro-genetic network for predicting uniaxial compressive strength of rocks", Geotech. Geol. Eng., 30(4), 1053-1062. https://doi.org/10.1007/s10706-012-9510-9.
  61. Nasrollahi, S., Maleki, S., Shariati, M., Marto, A. and Khorami, M. (2018), "Investigation of pipe shear connectors using push out test", Steel Compos. Struct., 27(5), 537-543. http://doi.org/10.12989/scs.2018.27.5.537.
  62. Nelson, M.M. and Illingworth, W.T. (1991), A Practical Guide to Neural Nets.
  63. Nosrati, A., Zandi, Y., Shariati, M., Khademi, K., Darvishnezhad Aliabad, M., Marto, A., Mu'azu, M., Ghanbari, E., Mandizadeh, M.B. and Shariati, A. (2018), "Portland cement structure and its major oxides and fineness", Smart Struct. Syst., 22(4), 425-432. https://doi.org/10.12989/sss.2018.22.4.425.
  64. Paknahad, M., Shariati, M., Sedghi, Y., Bazzaz, M. and Khorami, M. (2018), "Shear capacity equation for channel shear connectors in steel-concrete composite beams", Steel Compos. Struct., 28(4), 483-494. https://doi.org/10.12989/scs.2018.28.4.483.
  65. Park, S.S. (2011), "Unconfined compressive strength and ductility of fiber-reinforced cemented sand", Constr. Build. Mater., 25(2), 1134-1138. https://doi.org/10.1016/j.conbuildmat.2010.07.017.
  66. Penumadu, D. and Zhao, R. (1999), "Triaxial compression behavior of sand and gravel using artificial neural networks (ANN)", Comput. Geotech., 24(3), 207-230. https://doi.org/10.1016/S0266-352X(99)00002-6.
  67. Pham, B.T., Hoang, T.A., Nguyen, D.M. and Bui, D.T. (2018), "Prediction of shear strength of soft soil using machine learning methods", Catena, 166, 181-191. https://doi.org/10.1016/j.catena.2018.04.004.
  68. Priddy, K.L. and Keller, P.E. (2005), Artificial Neural Networks: An Introduction, SPIE Press.
  69. Sadeghipour Chahnasir, E., Zandi, Y., Shariati, M., Dehghani, E., Toghroli, A., Mohamed, E.T., Shariati, A., Safa, M., Wakil, K. and Khorami, M. (2018), "Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors", Smart Struct. Syst., 22(4), 413-424. http://doi.org/10.12989/sss.2018.22.4.413.
  70. Safa, M., Maleka, A., Arjomand, M.A., Khorami, M. and Shariati, M. (2019), "Strain rate effects on soil-geosynthetic interaction in fine-grained soil", Geomech. Eng., 19(6), 533-542. https://doi.org/10.12989/gae.2019.19.6.533.
  71. Safa, M., Sari, P.A., Shariati, M., Suhatril, M., Trung, N.T., Wakil, K. and Khorami, M. (2020), "Development of neuro-fuzzy and neuro-bee predictive models for prediction of the safety factor of eco-protection slopes", Physica A Stat. Mech. Appl., 12046. https://doi.org/10.1016/j.physa.2019.124046.
  72. Safa, M., Shariati, M., Ibrahim, Z., Toghroli, A., Baharom, S.B., Nor, N.M. and Petkovic, D. (2016), "Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam's shear strength", Steel Compos. Struct., 21(3), 679-688. https://doi.org/10.12989/scs.2016.21.3.679.
  73. Sajedi, F. and Shariati, M. (2019), "Behavior study of NC and HSC RCCs confined by GRP casing and CFRP wrapping", Steel Compos. Struct., 30(5), 417-432. https://doi.org/10.12989/scs.2019.30.5.417.
  74. Sedghi, Y., Zandi, Y., Shariati, M., Ahmadi, E., Moghimi Azar, V., Toghroli, A., Safa, M., Tonnizam Mohamad, E., Khorami, M. and Wakil, K. (2018), "Application of ANFIS technique on performance of C and L shaped angle shear connectors", Smart Struct. Syst., 22(3), 335-340. https://doi.org/10.12989/sss.2018.22.3.335.
  75. Shah, S., Ramli Sulong, N.H., Shariati, M. and Jumaat, M.Z. (2015), "Steel rack connections: Identification of most influential factors and a comparison of stiffness design methods", PloS one, 10(10), e0139422. https://doi.org/10.1371/journal.pone.0139422.
  76. Shah, S., Ramli Sulong, N.H., Shariati, M., Khan, R. and Jumaat, M. (2016), "Behavior of steel pallet rack beam-to-column connections at elevated temperatures", Thin-Wall. Struct., 106, 471-483. https://doi.org/10.1016/j.tws.2016.05.021.
  77. Shah, S., Sulong, N.R., Jumaat, M. and Shariati, M. (2016), "State-of-the-art review on the design and performance of steel pallet rack connections", Eng. Fail. Anal., 66, 240-258. https://doi.org/10.1016/j.engfailanal.2016.04.017.
  78. Shah, S., Sulong, N.R., Khan, R., Jumaat, M. and Shariati, M. (2016), "Behavior of industrial steel rack connections", Mech. Syst. Signal Process., 70, 725-740. https://doi.org/10.1016/j.ymssp.2015.08.026.
  79. Shahabi, S., Ramli Sulong, N.H., Shariati, M. and Shah, S. (2016), "Performance of shear connectors at elevated temperatures-A review", Steel Compos. Struct., 20(1), 185-203. https://doi.org/10.12989/scs.2016.20.1.185.
  80. Shahabi, S., Ramli Sulong, N.H., Shariati, M., Mohammadhassani, M. and Shah, S. (2016), "Numerical analysis of channel connectors under fire and a comparison of performance with different types of shear connectors subjected to fire", Steel Compos. Struct., 20(3), 651-669. http://doi.org/10.12989/scs.2016.20.3.651.
  81. Shariat, M., Shariati, M., Madadi, A. and Wakil, K. (2018), "Computational Lagrangian multiplier method by using for optimization and sensitivity analysis of rectangular reinforced concrete beams", Steel Compos. Struct., 29(2), 243-256. https://doi.org/10.12989/scs.2018.29.2.243.
  82. Shariati, A., Ramli Sulong, N.H., Suhatril, M. and Shariati, M. (2012), "Investigation of channel shear connectors for composite concrete and steel T-beam", Int. J. Phys. Sci., 7(11), 1828-1831. https://doi.org/10.5897/IJPS11.1604.
  83. Shariati, M. (2008), "Assessment building using none-destructive test techniques (ultrasonic pulse velocity and Schmidt rebound hammer)", Ph.D. Dissertation, Universiti Putra Malaysia, Seri Kembangan, Malaysia.
  84. Shariati, M. (2013), "Behaviour of c-shaped shear connectors in steel concrete composite beams", Ph.D. Dissertation, Universiti Malaya, Kuala Lumpur, Malaysia.
  85. Shariati, M. (2020), "Evaluation of seismic performance factors for tension-only braced frames", Steel Compos. Struct., 35(4), 599-609. https://doi.org/10.12989/scs.2020.35.4.599.
  86. Shariati, M., Azar, S.M., Arjomand, M.A., Tehrani, H.S., Daei, M. and Safa, M. (2019), "Comparison of dynamic behavior of shallow foundations based on pile and geosynthetic materials in fine-grained clayey soils", Geomech. Eng., 19(6), 473-484. https://doi.org/10.12989/gae.2019.19.6.473.
  87. Shariati, M., Faegh, S.S., Mehrabi, P., Bahavarnia, S., Zandi, Y., Masoom, D.R., Toghroli, A., Trung, N.T. and Salih, M.N. (2019), "Numerical study on the structural performance of corrugated low yield point steel plate shear walls with circular openings", Steel Compos. Struct., 33(4), 569-581. https://doi.org/10.12989/scs.2019.33.4.569.
  88. Shariati, M., Heyrati, A., Zandi, Y., Laka, H., Toghroli, A., Kianmehr, P., Safa, M., Salih, M.N. and Poi-Ngian, S. (2019), "Application of waste tire rubber aggregate in porous concrete", Smart Struct. Syst., 24(4), 553-566. https://doi.org/10.12989/sss.2019.24.4.553.
  89. Shariati, M., Mafipour, M. S., Mehrabi, P., Bahadori, A., Zandi, Y., Salih, M. N., Nguyen, H., Dou, J., Song, X. and Poi-Ngian, S. (2019), "Application of a hybrid artificial neural network-particle swarm optimization (ANN-PSO) model in behavior prediction of channel shear connectors embedded in normal and high-strength concrete", Appl. Sci., 9(24), 5534. https://doi.org/10.3390/app9245534.
  90. Shariati, M., Mafipour, M.S., Mehrabi, P., Shariati, A., Toghroli, A., Trung, N.T. and Salih, M.N. (2020), "A novel approach to predict shear strength of tilted angle connectors using artificial intelligence techniques", Eng. Comput., 1-21. https://doi.org/10.1007/s00366-019-00930-x.
  91. Shariati, M., Mafipour, M. S., Mehrabi, P., Zandi, Y., Dehghani, D., Bahadori, A., Shariati, A., Trung, N.T., Salih, M.N. and Poi-Ngian, S. (2019), "Application of extreme learning machine (ELM) and genetic programming (GP) to design steel-concrete composite floor systems at elevated temperatures", Steel Compos. Struct., 33(3), 319-332. https://doi.org/10.12989/scs.2019.33.3.319.
  92. Shariati, M., Mafipour, M.S., Ghahremani, B., Azarhomayun, F., Ahmadi, M., Trung, N.T. and Shariati, A. (2020), "A novel hybrid extreme learning machine-grey wolf optimizer (ELM-GWO) model to predict compressive strength of concrete with partial replacements for cement", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01081-0.
  93. Shariati, M., Mafipour, M.S., Haido, J.H., Yousif, S.T., Toghroli, A., Trung, N.T. and Shariati, A. (2020), "Identification of the most influencing parameters on the properties of corroded concrete beams using an adaptive neuro-fuzzy inference system (ANFIS)", Steel Compos. Struct., 34(1), 155-170. https://doi.org/10.12989/scs.2020.34.1.155.
  94. Shariati, M., Mafipour, M.S., Mehrabi, P., Ahmadi, M., Wakil, K., Trung, N.T. and Toghroli, A. (2020), "Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm)", Smart Struct. Syst., 25(2), 183-195. https://doi.org/10.12989/sss.2020.25.2.183.
  95. Shariati, M., Rafiei, S., Zandi, Y., Fooladvand, R., Gharehaghaj, B., Shariat, A., Trung, N.T., Salih, M.N., Mehrabi, P. and Poi-Ngian, S. (2019), "Experimental investigation on the effect of cementitious materials on fresh and mechanical properties of self-consolidating concrete", Adv. Concrete Construct., 8(3), 225-237. https://doi.org/10.12989/acc.2019.8.3.225.
  96. Shariati, M., Ramli Sulong, N.H. and Arabnejad Khanouki, M.M. (2010), "Experimental and analytical study on channel shear connectors in light weight aggregate concrete", Proceedings of the 4th International Conference on Steel & Composite Structures, Sydney, Australia, July.
  97. Shariati, M., Ramli Sulong, N.H., Arabnejad Khanouki, M.M. and Mahoutian, M. (2011), "Shear resistance of channel shear connectors in plain, reinforced and lightweight concrete", Sci. Res. Essays, 6(4), 977-983.
  98. Shariati, M., Ramli Sulong, N.H., Arabnejad Khanouki, M.M. and Shariati, A. (2011a), "Experimental and numerical investigations of channel shear connectors in high strength concrete", Proceedings of the 2011 World Congress on Advances in Structural Engineering and Mechanics (ASEM'11+), Seoul, Korea, September.
  99. Shariati, M., Ramli Sulong, N.H., Sinaei, H., Arabnejad Khanouki, M.M. and Shafigh, P. (2011b), "Behavior of channel shear connectors in normal and light weight aggregate concrete (experimental and analytical study)", Adv. Mater. Res., 168, 2303-2307. https://doi.org/10.4028/www.scientific.net/AMR.168-170.2303.
  100. Shariati, M., Ramli Sulong, N.H., Shariati, A. and Arabnejad Khanouki, M.M. (2015), "Behavior of V-shaped angle shear connectors: Experimental and parametric study", Mater. Struct., 49(9), 3909-3926. https://doi.org/10.1617/s11527-015-0762-8.
  101. Shariati, M., Ramli Sulong, N.H., Suhatril, M., Shariati, A., Arabnejad Khanouki, M.M. and Sinaei, H. (2012), "Fatigue energy dissipation and failure analysis of channel shear connector embedded in the lightweight aggregate concrete in composite bridge girders", Proceedings of the 5th International Conference on Engineering Failure Analysis, The Hague, The Netherlands, July.
  102. Shariati, M., Shariati, A., Ramli Sulong, N.H., Suhatril, M. and Arabnejad Khanouki, M.M. (2014), "Fatigue energy dissipation and failure analysis of angle shear connectors embedded in high strength concrete", Eng. Fail. Anal., 41, 124-134. https://doi.org/10.1016/j.engfailanal.2014.02.017.
  103. Shariati, M., Tahir, M.M., Wee, T.C., Shah, S., Jalali, A., Abdullahi, M.A.M. and Khorami, M. (2018), "Experimental investigations on monotonic and cyclic behavior of steel pallet rack connections", Eng. Fail. Anal., 85, 149-166. https://doi.org/10.1016/j.engfailanal.2017.08.014.
  104. Shariati, M., Tahmasbi, F., Mehrabi, P., Bahadori, A. and Toghroli, A. (2020), "Monotonic behavior of C and L shaped angle shear connectors within steel-concrete composite beams: An experimental investigation", Steel Compos. Struct., 35(2), 237-247. https://doi.org/10.12989/scs.2020.35.2.237.
  105. Shariati, M., Toghroli, A., Jalali, A. and Ibrahim, Z. (2017), "Assessment of stiffened angle shear connector under monotonic and fully reversed cyclic loading", Proceedings of the 5th International Conference on Advances in Civil, Structural and Mechanical Engineering-CSM 2017, Zurich, Switzerland, September.
  106. Shariati, M., Trung, N.T., Wakil, K., Mehrabi, P., Safa, M. and Khorami, M. (2019), "Moment-rotation estimation of steel rack connection using extreme learning machine", Steel Compos. Struct., 31(5), 427-435. https://doi.org/10.12989/scs.2019.31.5.427.
  107. Simpson, P.K. (1990), Artificial Neural System-Foundation, Paradigm, Application and Implementations, Pergamon, New York, U.S.A.
  108. Sinaei, H., Jumaat, M.Z. and Shariati, M. (2011), "Numerical investigation on exterior reinforced concrete beam-column joint strengthened by composite fiber reinforced polymer (CFRP)", Int. J. Phys. Sci., 6(28), 6572-6579. https://doi.org/10.5897/IJPS11.1225.
  109. Singh, T.N., Kanchan, R., Saigal, K. and Verma, A.K. (2004), "Prediction of P-wave velocity and anisotropic properties of rock using Artificial Neural Networks technique", J. Sci. Industr. Res., 63, 32-38.
  110. Suhatril, M., Osman, N., Sari, P.A., Shariati, M. and Marto, A. (2019), "Significance of surface eco-protection techniques for cohesive soils slope in Selangor, Malaysia", Geotech. Geol. Eng., 37(3), 2007-2014. https://doi.org/10.1007/s10706-018-0740-3.
  111. Tahmasbi, F., Maleki, S., Shariati, M., Ramli Sulong, N.H. and Tahir, M.M. (2016), "Shear capacity of C-shaped and L-shaped angle shear connectors", PLoS One, 11(8), e0156989. https://doi.org/10.1371/journal.pone.0156989.
  112. Teng, J. and Lam, L. (2004), "Behavior and modeling of fiber reinforced polymer-confined concrete", J. Struct. Eng., 130(11), 1713-1723. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:11(1713).
  113. Tiwari, B., Ajmera, B., Moubayed, S., Lemmon, A. and Styler, K. (2012), "Soil modification with shredded rubber tires", Proceedings of the GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering, Oakland, California, U.S.A., March.
  114. Toghroli, A., Mehrabi, P., Shariati, M., Trung, N.T., Jahandari, S. and Rasekh, H. (2020), "Evaluating the use of recycled concrete aggregate and pozzolanic additives in fiber-reinforced pervious concrete with industrial and recycled fibers", Constr. Build. Mater., 252, 118997. https://doi.org/10.1016/j.conbuildmat.2020.118997.
  115. Toghroli, A., Mohammadhassani, M., Suhatril, M., Shariati, M. and Ibrahim, Z. (2014), "Prediction of shear capacity of channel shear connectors using the ANFIS model", Steel Compos. Struct., 17(5), 623-639. http://doi.org/10.12989/scs.2014.17.5.623.
  116. Toghroli, A., Shariati, M., Karim, M.R. and Ibrahim, Z. (2017), "Investigation on composite polymer and silica fume-rubber aggregate pervious concrete", Proceedings of the 5th International Conference on Advances in Civil, Structural and Mechanical Engineering - CSM 2017, Zurich, Switzerland, September.
  117. Toghroli, A., Shariati, M., Sajedi, F., Ibrahim, Z., Koting, S., Mohamad, E.T. and Khorami, M. (2018), "A review on pavement porous concrete using recycled waste materials", Smart Struct. Syst., 22(4), 433-440. https://doi.org/10.12989/sss.2018.22.4.433.
  118. Toghroli, A., Suhatril, M., Ibrahim, Z., Safa, M., Shariati, M. and Shamshirband, S. (2016), "Potential of soft computing approach for evaluating the factors affecting the capacity of steel-concrete composite beam", J. Intell. Manuf., 29(8), 1793-1801. https://doi.org/10.1007/s10845-016-1217-y.
  119. Tonnizam Mohamad, E., Jahed Armaghani, D., Ghoroqi, M., Yazdani Bejarbaneh, B., Ghahremanians, T., Abd Majid, M.Z. and Tabrizi, O. (2017), "Ripping production prediction in different weathering zones according to field data", Geotech. Geol. Eng., 35(5), 2381-2399. https://doi.org/10.1007/s10706-017-0254-4.
  120. Trung, N.T., Shahgoli, A.F., Zandi, Y., Shariati, M., Wakil, K., Safa, M. and Khorami, M. (2019), "Moment-rotation prediction of precast beam-to-column connections using extreme learning machine", Struct. Eng. Mech., 70(5), 639-647. https://doi.org/10.12989/sem.2019.70.5.639.
  121. Vidal, H. (1969), "The principle of reinforced earth", Highway Res. Rec, (282).
  122. Waldron, L.J. (1977), "The shear resistance of root‐permeated homogeneous and stratified soil", Soil Sci. Soc. Amer. J., 41(5), 843-849. https://doi.org/10.2136/sssaj1977.03615995004100050005x.
  123. Wang, M., Shi, X., Zhou, J. and Qiu, X. (2018), "Multi-planar detection optimization algorithm for the interval charging structure of large-diameter longhole blasting design based on rock fragmentation aspects", Eng. Optimiz., 50(12), 2177-2191. https://doi.org/10.1080/0305215X.2018.1439943.
  124. Wang, X., Tang, Z., Tamura, H., Ishii, M. and Sun, W. (2004), "An improved backpropagation algorithm to avoid the local minima problem", Neurocomputing, 56, 455-460. https://doi.org/10.1016/j.neucom.2003.08.006.
  125. Wei, X., Shariati, M., Zandi, Y., Pei, S., Jin, Z., Gharachurlu, S., Abdullahi, M.M., Tahir, M.M. and Khorami, M. (2018), "Distribution of shear force in perforated shear connectors", Steel Compos. Struct., 27(3), 389-399. http://doi.org/10.12989/scs.2018.27.3.389.
  126. Wesley, L. (2004), "Discussion-residual strength of clays and correlation using Atterberg limits", Geotechnique, 54(7), 503-504. https://doi.org/10.1680/geot.54.7.503.46752.
  127. Xia, Q.S., Boyce, M.C. and Parks, D.M. (2002), "A constitutive model for the anisotropic elastic-plastic deformation of paper and paperboard", Int. J. Solids Struct., 39(15), 4053-4071. https://doi.org/10.1016/S0020-7683(02)00238-X.
  128. Xie, Q., Sinaei, H., Shariati, M., Khorami, M., Mohamad, E.T. and Bui, D.T. (2019), "An experimental study on the effect of CFRP on behavior of reinforce concrete beam column connections", Steel Compos. Struct., 30(5), 433-441. https://doi.org/10.12989/scs.2019.30.5.433.
  129. Zandi, Y., Shariati, M., Marto, A., Wei, X., Karaca, Z., Dao, D., Toghroli, A., Hashemi, M.H., Sedghi, Y. and Wakil, K. (2018), "Computational investigation of the comparative analysis of cylindrical barns subjected to earthquake", Steel Compos. Struct., 28(4), 439-447. https://doi.org/10.12989/scs.2018.28.4.439.
  130. Zhou, J., Aghili, N., Ghaleini, E.N., Bui, D.T., Tahir, M. and Koopialipoor, M. (2019), "A Monte Carlo simulation approach for effective assessment of flyrock based on intelligent system of neural network", Eng. Comput., 36(2), 713-723. https://doi.org/10.1007/s00366-019-00726-z.
  131. Zhou, J., Li, X. and Mitri, H.S. (2016), "Classification of rockburst in underground projects: Comparison of ten supervised learning methods", J. Comput. Civ. Eng., 30(5), 4016003-4016003. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000553.
  132. Ziaei-Nia, A., Shariati, M. and Salehabadi, E. (2018), "Dynamic mix design optimization of high-performance concrete", Steel Compos. Struct., 29(1), 67-75. http://doi.org/10.12989/scs.2018.29.1.067.
  133. Zorlu, K., Gokceoglu, C., Ocakoglu, F., Nefeslioglu, H.A. and Acikalin, S. (2008), "Prediction of uniaxial compressive strength of sandstones using petrography-based models", Eng. Geol., 96(3), 141-158. https://doi.org/10.1016/j.enggeo.2007.10.009.
  134. Zornberg, J.J. (2002), "Discrete framework for limit equilibrium analysis of fibre-reinforced soil", Geotechnique, 52(8), 593-604. https://doi.org/10.1680/geot.2002.52.8.593.
  135. Zurada, J.M. (1992), Introduction to Artificial Neural Systems, West St. Paul.

Cited by

  1. Data-driven framework for predicting ground temperature during ground freezing of a silty deposit vol.26, pp.3, 2020, https://doi.org/10.12989/gae.2021.26.3.235