• 제목/요약/키워드: triangular preconditioner

검색결과 3건 처리시간 0.018초

PRECONDITIONING FOR THE p-VERSION BOUNDARY ELEMENT METHOD IN THREE DIMENSIONS WITH TRIANGULAR ELEMENTS

  • Cao, Wei-Ming;Guo, Benqi
    • 대한수학회지
    • /
    • 제41권2호
    • /
    • pp.345-368
    • /
    • 2004
  • A preconditioning algorithm is developed in this paper for the iterative solution of the linear system of equations resulting from the p-version boundary element approximation of the three dimensional integral equation with hypersingular operators. The preconditioner is derived by first making the nodal and side basis functions locally orthogonal to the element internal bases, and then by decoupling the nodal and side bases from the internal bases. Its implementation consists of solving a global problem on the wire-basket and a series of local problems defined on a single element. Moreover, the condition number of the preconditioned system is shown to be of order $O((1+ln/p)^{7})$. This technique can be applied to discretization with triangular elements and with general basis functions.

PERFORMANCE COMPARISON OF PRECONDITIONED ITERATIVE METHODS WITH DIRECT PRECONDITIONERS

  • Yun, Jae Heon;Lim, Hyo Jin;Kim, Kyoum Sun
    • Journal of applied mathematics & informatics
    • /
    • 제32권3_4호
    • /
    • pp.389-403
    • /
    • 2014
  • In this paper, we first provide comparison results of preconditioned AOR methods with direct preconditioners $I+{\beta}L$, $I+{\beta}U$ and $I+{\beta}(L+U)$ for solving a linear system whose coefficient matrix is a large sparse irreducible L-matrix, where ${\beta}$ > 0. Next we propose how to find a near optimal parameter ${\beta}$ for which Krylov subspace method with these direct preconditioners performs nearly best. Lastly numerical experiments are provided to compare the performance of preconditioned iterative methods and to illustrate the theoretical results.

An IE-FFT Algorithm to Analyze PEC Objects for MFIE Formulation

  • Seo, Seung Mo
    • Journal of electromagnetic engineering and science
    • /
    • 제19권1호
    • /
    • pp.6-12
    • /
    • 2019
  • An IE-FFT algorithm is implemented and applied to the electromagnetic (EM) solution of perfect electric conducting (PEC) scattering problems. The solution of the method of moments (MoM), based on the magnetic field integral equation (MFIE), is obtained for PEC objects with closed surfaces. The IE-FFT algorithm uses a uniform Cartesian grid to apply a global fast Fourier transform (FFT), which leads to significantly reduce memory requirement and speed up CPU with an iterative solver. The IE-FFT algorithm utilizes two discretizations, one for the unknown induced surface current on the planar triangular patches of 3D arbitrary geometries and the other on a uniform Cartesian grid for interpolating the free-space Green's function. The uniform interpolation of the Green's functions allows for a global FFT for far-field interaction terms, and the near-field interaction terms should be adequately corrected. A 3D block-Toeplitz structure for the Lagrangian interpolation of the Green's function is proposed. The MFIE formulation with the IE-FFT algorithm, without the help of a preconditioner, is converged in certain iterations with a generalized minimal residual (GMRES) method. The complexity of the IE-FFT is found to be approximately $O(N^{1.5})$and $O(N^{1.5}logN)$ for memory requirements and CPU time, respectively.