• Title/Summary/Keyword: triangular elements

Search Result 200, Processing Time 0.022 seconds

Advanced Design Environmental With Adaptive And Knowledge-Based Finite Elements

  • Haghighi, Kamyar;Jang, Eun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1222-1229
    • /
    • 1993
  • An advanced design environment , which is based on adaptive and knowledge -based finite elements (INTELMESH), has been developed. Unlike other approaches, INTEMMESH incorporates the information about the object geometry as well as the boundary and loading conditions to generate an ${\alpha}$-priori finite element mesh which is more refined around the critical regions of the problem domain. INTEMMESH is designed for planar domains and axisymmetric 3-D structures of elasticity and heat transfer subjected to mechanical and thermal loading . It intelligently identifies the critical regions/points in the problem domain and utilize the new concepts of substructuring and wave propagation to choose the proper mesh size for them. INTEMMESH generates well-shaped triangular elements by applying trangulartion and Laplacian smoothing procedures. The adaptive analysis involves the intial finite elements analyze and an efficient ${\alpha}$-posteriori error analysis involves the initial finite element anal sis and an efficient ${\alpha}$-posteriori error analysis and estimation . Once a problem is defined , the system automatically builds a finite element model and analyzes the problem though automatic iterative process until the error reaches a desired level. It has been shown that the proposed approach which initiates the process with an ${\alpha}$-priori, and near optimum mesh of the object , converges to the desired accuracy in less time and at less cost. Such an advanced design/analysis environment will provide the capability for rapid product development and reducing the design cycle time and cost.

  • PDF

Numerical Computation of Dynamic Stress Intensity Factors Based on the Equations of Motion in Convolution Integral (시간적분형 운동방정식을 바탕으로 한 동적 응력확대계수의 계산)

  • Sim, U-Jin;Lee, Seong-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.904-913
    • /
    • 2002
  • In this paper, the dynamic stress intensity factors of fracture mechanics are numerically computed in time domain using the FEM. For which the finite element formulations are derived applying the Galerkin method to the equations of motion in convolution integral as has been presented in the previous paper. To assure the strain fields of r$^{-1}$ 2/ singularity near the crack tip, the triangular quarter-point singular elements are imbedded in the finite element mesh discretized by the isoparametric quadratic quadrilateral elements. Two-dimensional problems of the elastodynamic fracture mechanics under the impact load are solved and compared with the existing numerical and analytical solutions, being shown that numerical results of good accuracy are obtained by the presented method.

Study on Crack Propagation of Concrete beam under Mixed-Mode Loading by Minimum Strain Energy Density Failure Criterion (최소 변형 에너지 밀도 기준에 의한 콘크리트 보의 균열전파에 관한 연구)

  • 진치섭;이영호;신동익;오정민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.529-534
    • /
    • 1998
  • To find out an adequate failure criterion in two-dimensional linear elastic crack problems, finite element programs, SED, which determine stress intensity factors $K_I, K_{II}$, crack angle and peak load by the minimum strain energy density failure criterion were developed. In this program, the conventional quadratic isoparametric elements were used in all regions except the crack tip zone where triangular singular elements with 6 nodes were used. The results of SED were compared with the results of those which followed by the maximum circumferential tensile stress criteria and those by the maximum energy release rate criteria and those by Jenq and Shah`s experiments of the same geometry and material properties. The maximum energy release rate criteria were better close to those of the Jenq and Shah`s experiments than the maximum circumferential tensile stress criteria and the minimum strain energy density criteria.

  • PDF

Medial Surface Generation by Using Chordal Axis Transform in Shell Structures (쉘 구조물에서 Chordal Axis Transform 을 이용한 중립면 생성)

  • 권기연;박정민;이병채;채수원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.865-870
    • /
    • 2004
  • This paper describes the generation of chordal surface for various shell structures, such as automobile bodies, plastic injection mold components and shell metal parts. After one-layered tetrahedral mesh is generated by an advancing front algorithm, the chordal surface is generated by cutting a tetrahedral element. It is generated one or two elements at a tetrahedral element and the chordal surface is composed with triangular or quadrilateral elements. This algorithm has been tested on several models with rib structure.

  • PDF

Numerical Analysis of Eddy Current Testing for Tube with Axi-symmetric Defect using Boundary Element Method (경계요소법을 이용한 축대칭 결함을 갖는 도체관에 대한 와전류탐상 수치해석)

  • Seo, Jang-Won;Lee, Hyang-Beom;Yoon, Man-Sik;Lim, Eui-Soo;Chung, Tae-Eon
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.748-750
    • /
    • 2001
  • This paper describes numerical analysis of eddy current testing for tube with axi-symmetric defect using boundary element method. In this ECT(Eddy Current Testing) numerical analysis. BEM and FEM are used to compare their characteristics and results of ECT, respectively BEM is easier than FEM to design geometrically complex domain because in case of BEM, domain is divided into segments or elements, but in case of FEM, domain is divided into small finite triangular or quadrilateral elements. For this reason asymmetry defect is used for this BE numerical analysis. As a result, the similar result can be obtained through both numerical analyses, and BEM can be applied to the numerical analysis of ECT.

  • PDF

Parametric Design on Bellows of Piping System Using Fuzzy Knowledge Processing

  • Lee Yang-Chang;Lee Joon-Seong;Choi Yoon-Jong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.144-149
    • /
    • 2006
  • This paper describes a novel automated analysis system for bellows of piping system. An automatic finite element (FE) mesh generation technique, which is based on the fuzzy theory and computational geometry technique, is incorporated into the system, together with one of commercial FE analysis codes and one of commercial solid modelers. In this system, a geometric model, i.e. an analysis model, is first defined using a commercial solid modelers for 3-D shell structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay triangulation technique is introduced as a basic tool for element generation. The triangular elements are converted to quadrilateral elements. Practical performances of the present system are demonstrated through several analysis for bellows of piping system.

Automatic Quadrilateral Element Mesh Generation Using Boundary Normal Offsetting In Various Two Dimensional Objects (다양한 2차원 형상에서의 외부 경계 절점 오프셋 방법을 이용한 자동 사각 요소 및 요소망 생성)

  • 김도헌;양현익
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.4
    • /
    • pp.270-277
    • /
    • 2003
  • In two dimensional mechanical design analysis, quadrilateral element mesh is preferred because it provides more accurate result than triangular element mesh. However, automation of quadrilateral element mesh generation is much more complex because of its geometrical complexities. In this study, an automatic quadrilateral element mesh generation algorithm based on the boundary normal offsetting method and the boundary decomposition method is developed. In so doing, nodes are automatically placed using the boundary normal offsetting method and the decomposition method is applied to decompose the designed domain into a set of convex subdomains. The generated elements are improved by relocation of the existing nodes based on the four criteria - uniformity, aspect ratio, skewness and taper degree. The developed algorithm requires minimal user inputs such as boundary data and the distance between nodes.

Code Development of Automatic Mesh Generation for Finite Element Method Using Delaunay Triangulation Method (Delaunay 삼각화에 의한 유한요소 자동 생성 코드 개발에 관한 연구)

  • Park Pyong-Ho;Sah Jong-Youb
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.111-117
    • /
    • 1996
  • The Delaunay triangulation technique was tested for complicated shapes of computational domain. While a simple geometry, both in topology and in geometry, was discretized well into triangular elements. a complex geometry often failed in triangularization. A complex geometry should be devided into smaller sub-domains whose shape is simple both topologically and geometrically. The present study developed the data structures not only for relationships among neibering elements but also for shape information, and coupled these into the Delaunay triangulation technique. This approach was able to enhance greatly the reliability of triangularization specially in complicated shapes of computational domains. The GUI (Graphic User Interface) and OOP (Object-Oriented Programming) were used in order to develop the user-friendly and efficient computer code.

  • PDF

Finite Element Analysis of Fluid Flow with Free Surface by using Grid Refinement of Triangular Elements (삼각형 요소의 격자 세분화를 이용한 자유 표면 유동장의 유한 요소 해석)

  • Kim, Ki-Don;Yang, Dong-Yol;Jeong, Jun-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.939-944
    • /
    • 2003
  • The analysis involves an adaptive grid that is created under a criterion of element categorization of filling states and locations in the total region at each time step. By using an adaptive grid wherein the elements, finer than those in internal and external regions, are distributed at the surface region through refinement and coarsening procedures, a more efficient analysis of transient fluid flow with free surface is achieved. Using the proposed numerical technique, the collapse of a dam is analyzed. The numerical results agree well with the theoretical solutions as well as with the experimental results. Through comparisons with the numerical results of several cases using different types of grids, the efficiency of the proposed technique is verified.

  • PDF

Structural Analysis of Plate Structures by Transfer of Stiffness Coefficient (강성계수의 전달에 의한 평판 구조물의 구조해석)

  • Choi, Myung-Soo
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.92-97
    • /
    • 2007
  • It is important to compute the structural analysis of plate structures in structural design. In this paper, the author uses the finite element-transfer stiffness coefficient method (FE-TSCM) for the structural analysis of plate structures. The FE-TSCM is based on the concept of the successive transmission of the transfer stiffness coefficient method and the modeling technique of the finite element method (FEM). The algorithm for in-plane structural analysis of a rectangular plate structure is formulated by using the FE-TSCM. In order to confirm the validity of the FE-TSCM for structural analysis of plate structures, two numerical examples for the in-plane structural analysis of a plate with triangular elements and the bending structural analysis of a plate with rectangular elements are computed. The results of the FE-TSCM are compared with those of the FEM on a personal computer.

  • PDF