• Title/Summary/Keyword: triangular element

Search Result 331, Processing Time 0.025 seconds

Optimum micro dimple configuration on the elastomer seal surface (탄성중합체 시일 표면의 미세 딤플에 대한 최적설계)

  • Yoo, Dae-Won
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.1-10
    • /
    • 2020
  • The seal plays a role in preventing oil leakage when the lip and the rotating shaft come into contact with the fluid and air pressure. Recently, micro dimples or micro pockets are processed and used on the lubrication surfaces of thrust bearings, mechanical bearings, and piston rings. Compared to a smooth surface, micro dimples reduce friction and increase the life of parts. This paper analyzed various kinds of micro dimple shapes on the sealing surface, i.e. circle, rectangle, triangle, and trapezoid. For this purpose, Introduced the design of experiments to work out a micro dimple configuration, unlikely to be damaged from cracks and low in contact stress. As a result, the triangular dimple showed the best results. Optimal factors were dimple size 0.15 mm, dimple depth 0.0383 mm, dimple density 40%, and the maximum equivalent stress was 9.1455 MPa, and the maximum contact pressure was 9.6612 MPa. This paper analyzed the optimal shape of dimples by finite element analysis. As a research project, experiments and comparative analysis of micro dimple shapes are needed.

Design of All-SiC Lightweight Secondary and Tertiary Mirrors for Use in Spaceborne Telescopes

  • Bae, Jong-In;Lee, Haeng-Bok;Kim, Jeong-Won;Kim, Myung-Whun
    • Current Optics and Photonics
    • /
    • v.6 no.1
    • /
    • pp.60-68
    • /
    • 2022
  • We report on the design of the secondary and the tertiary mirrors used in lightweight assemblies made entirely of silicon carbide (SiC). The essential design points are weight reduction within the acceptable deformation of the mirror surface by gravity release, temperature change, and vibration during or after space launch. To find a design that achieves the target requirements, we established finite element models for various candidate designs and subjected each one to wave front error analyses along gravity directions and in operation temperatures. We also calculated the natural frequencies of the candidate assemblies. Our study suggested that a triangular cell with bipod flexure support can satisfy the target weight within the requirements.

Analysis of profile ring rolling for rings having V-groove of trapezoidal protrusion by the upper-bound elemental technique (사다리꼴 모양의 돌기나 V형 홈을 갖는 형상 환상압연에 대한 UBET 해석)

  • Hahn, Young-Ho;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.40-47
    • /
    • 1993
  • To diversify the area of application of UBET to the analysis of ring rolling which produces rings having more complex cross-sectional configuration, an element of triangular cross-section has been introduced and the corresponding kinematically admissible velocity field has been derived while considering the material flow between neighboring elements. The theoretical perdictions in roll torque and profile formation show good agreement with the experiments. The effect of process parameters such as feed rate and taper angle of the roll groove has been discussed.

  • PDF

An Assessment of Structure Safety for Basic Insulation Panel of KC-1 LNG Cargo Containment system under Sloshing Load (슬로싱 하중을 받는 한국형 LNG선 화물창(KC-1)의 보냉 판넬에 대한 구조 안전성 평가)

  • Jin, Kyo-Kook;Oh, Byung-Taek;Kim, Young-Kyun;Yoon, Ihn-Soo;Yang, Young-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.2
    • /
    • pp.85-89
    • /
    • 2013
  • The purpose of the development of KC-1 LNG cargo containment system is reduction in royalty and increase in competitiveness of shipbuilding industry. An assessment of structure safety for LNG cargo containment system under sloshing load due to ship motion has become an important design element. The ideal way is to implement fully interaction of the fluid domain and the cargo containment system. However the irregular sloshing pressure were idealized in the form of a triangular wave for safety assessment because the fluid- structure interaction analysis is taken the extensive computation time and difficult to ensure the accuracy of the results. In this study, the sloshing load was assumed to be a triangular wave with a maximum pressure of 10 bar during 15/1000 seconds. In the analytic results, the basic insulation panel of KC-1 LNG cargo containment system was assessed to be structurally safe for sloshing load.

A Study of the Radiation Characteristics of Novel Printed Antenna Composed of Dual Elements with Different Shape (다른 형태를 가진 2소자 프린트 안테나의 방사특성에 관한 연구)

  • Lee, Chai-Bong;Kim, Jung-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.2
    • /
    • pp.141-145
    • /
    • 2008
  • When the current flows to parallel lines with different length, it is researched that the radiation is occured by the common-mode current radiates, and the small light weight antenna composed of dual elements by using the principle is proposed. However, there is a problem in production about this antenna because this liner antenna is structured by combining with wires. In this paper, we improved this liner antenna, and designed the plane antenna composed of dual elements with different length in the plane printed board to produce and to design easily. Furthermore, the antenna with the wide-band characteristic is also designed in the same board. The radiation pattern is similar to the dipole antenna on account of designing the triangular patch S, the notch and two tapers in patch S, the notch and two tapers in the antenna element. In result, it was able to design the antenna working wider band-width(the bandwidth ratio about 58%, $VSWR{\le}2$).

  • PDF

Structural Performance of Double Rip Decks Reinforced with Inverted Triangular Truss Girders (역삼각 트러스 거더로 보강된 더블 골 데크 성능 평가)

  • Son, Hong-Jun;Kim, Young-Ho;Chung, Kyung-Soo;Kim, Dae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.559-566
    • /
    • 2017
  • This paper proposes a new composite deckplate system reinforced with inverted triangular truss girders(called 'D Deck'), which does not require the use of temporary supports at construction stage. The proposed system retains increased stiffness and strength while keeping the absolute floor height change to a minimum level and can be utilized as floor systems of various types beam members such as the conventional wide-flange and U-shaped composite beams. In order to evaluate the performance of the proposed system, five specimens with a span of 5.5 m were fabricated and tested under field loading conditions consisting of several intermediate steps. The load-deflection curves of each specimen were plotted and compared with the nonlinear three-dimensional finite element analysis results. The comparison showed that the effective load sharing between the truss girders and floor deck occurs and the maximum deflection under construction stage loading is well below the limit estimated by the provisions in Korea Building Code.

Evaluation of Structural Performance of 3D Printed Composite Rudder according to Internal Topology Shape (내부 위상 형상에 따른 3D 프린트 복합재 방향타의 구조 성능 평가)

  • Young-Jae Cho;Hyoung-Seock Seo;Hui-Seung Park
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.454-460
    • /
    • 2023
  • Recently, regulations on greenhouse gas emissions have been strengthened, and the International Maritime Organization (IMO) has been strengthening greenhouse gas regulations with a goal of net 'zero' emissions by 2050. In addition, in the shipbuilding/offshore sector, it is important to reduce operating costs, such as improving propulsion efficiency and lightening structures. In this regard, research is currently being conducted on topology optimization using 3D printed composite materials to satisfy structural lightness and high rigidity. In this study, three topology shapes (hexagonal, square, and triangular) were applied to the interior of a rudder, a ship structure, using 3D printed composite materials. Structural analysis was performed to determine the appropriate shape for the rudder. CFD analysis was performed at 10° intervals from 0° to 30° for each rudder angle under the condition of 8 knots, and the load conditions were set based on the CFD analysis results. As a result of the structural analysis considering the internal topology shape of the rudder, it was confirmed that the triangular, square, and hexagonal topology shapes have excellent performance. The rudder with a square topology shape weighs 78.5% of the rudder with a triangular shape, and the square topology shape is considered to superior in terms of weight reduction.

Behaviors of Laminated Composite Folded Structures According to Ratio of Folded Length (곡절 길이비에 따른 복합적층 절판 구조물의 거동)

  • Yoo Yong-Min;Yhim Sung-Soon;Chang Suk-Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3 s.73
    • /
    • pp.223-231
    • /
    • 2006
  • This study deals with behavior characteristics of laminated composite folded structures according to ratio of folded length based on a higher-order shear deformation theory. Well-known mixed finite element method using Lagrangian and Hermite shape interpolation functions is a little complex and have some difficulties applying to a triangular element. However, a higher-order shear deformation theory using only Lagrangian shape interpolation functions avoids those problems. In this paper, a drilling degree of freedom is appended for more accurate analysis and computational simplicity of folded plates. There are ten degrees of freedom per node, and four nodes per element. Journal on folded plates for effects of length variations is not expressed. Many results in this study are carried out according to ratio of folded length. The rational design is possible through analyses of complex and unpredictable laminated composite folded structures.

Analysis of the Diffuse Axonal Injury of the Human Brain using Finite Element Model (유한요소 모델을 이용한 인간 뇌의 미만성 부상에 대한 해석)

  • Kim, Yeong-Eun;Nam, Dae-Hun
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.6
    • /
    • pp.603-609
    • /
    • 1998
  • To anlyze the diffuse axonal injury of the human brain, 3-D finite element models of the adult, two and three years child were developed. Triangular type acceleration which had its maximum value 200g was applied to investigate the effects of acceleration direction and duration time. The pattern of high shear stress generated at the brain stem, pones and midbrain was similar to the pattern of DAI seen in the clinical observation, especially high maximum shear stress was detected in the brain stem of the six year old child model under flexional acceleration. As the duration of acceleration increased generated pressure and maximum shear stress also increased. For the children's model relatively small pressure was generated regardless of the acceleration direction and continued much longer compared with adult's model. From this analysis maximum shear stress was revealed more proper indicator to predict DAI compared to HIC in case of angular acceleration loading.

  • PDF

Solution of randomly excited stochastic differential equations with stochastic operator using spectral stochastic finite element method (SSFEM)

  • Hussein, A.;El-Tawil, M.;El-Tahan, W.;Mahmoud, A.A.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.2
    • /
    • pp.129-152
    • /
    • 2008
  • This paper considers the solution of the stochastic differential equations (SDEs) with random operator and/or random excitation using the spectral SFEM. The random system parameters (involved in the operator) and the random excitations are modeled as second order stochastic processes defined only by their means and covariance functions. All random fields dealt with in this paper are continuous and do not have known explicit forms dependent on the spatial dimension. This fact makes the usage of the finite element (FE) analysis be difficult. Relying on the spectral properties of the covariance function, the Karhunen-Loeve expansion is used to represent these processes to overcome this difficulty. Then, a spectral approximation for the stochastic response (solution) of the SDE is obtained based on the implementation of the concept of generalized inverse defined by the Neumann expansion. This leads to an explicit expression for the solution process as a multivariate polynomial functional of a set of uncorrelated random variables that enables us to compute the statistical moments of the solution vector. To check the validity of this method, two applications are introduced which are, randomly loaded simply supported reinforced concrete beam and reinforced concrete cantilever beam with random bending rigidity. Finally, a more general application, randomly loaded simply supported reinforced concrete beam with random bending rigidity, is presented to illustrate the method.