• Title/Summary/Keyword: tree classification method

Search Result 361, Processing Time 0.028 seconds

EEG Classification for depression patients using decision tree and possibilistic support vector machines (뇌파의 의사 결정 트리 분석과 가능성 기반 서포트 벡터 머신 분석을 통한 우울증 환자의 분류)

  • Sim, Woo-Hyeon;Lee, Gi-Yeong;Chae, Jeong-Ho;Jeong, Jae-Seung;Lee, Do-Heon
    • Bioinformatics and Biosystems
    • /
    • v.1 no.2
    • /
    • pp.134-138
    • /
    • 2006
  • Depression is the most common and widespread mood disorder. About 20% of the population might suffer a major, incapacitating episode of depression during their lifetime. This disorder can be classified into two types: major depressive disorders and bipolar disorder. Since pharmaceutical treatments are different according to types of depression disorders, correct and fast classification is quite critical for depression patients. Yet, classical statistical method, such as minnesota multiphasic personality inventory (MMPI), have some difficulties in applying to depression patients, because the patients suffer from concentration. We used electroencephalogram (EEG) analysis method fer classification of depression. We extracted nonlinearity of information flows between channels and estimated approximate entropy (ApEn) for the EEG at each channel. Using these attributes, we applied two types of data mining classification methods: decision tree and possibilistic support vector machines (PSVM). We found that decision tree showed 85.19% accuracy and PSVM exhibited 77.78% accuracy for classification of depression, 30 patients with major depressive disorder and 24 patients having bipolar disorder.

  • PDF

Fuaay Decision Tree Induction to Obliquely Partitioning a Feature Space (특징공간을 사선 분할하는 퍼지 결정트리 유도)

  • Lee, Woo-Hang;Lee, Keon-Myung
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.3
    • /
    • pp.156-166
    • /
    • 2002
  • Decision tree induction is a kind of useful machine learning approach for extracting classification rules from a set of feature-based examples. According to the partitioning style of the feature space, decision trees are categorized into univariate decision trees and multivariate decision trees. Due to observation error, uncertainty, subjective judgment, and so on, real-world data are prone to contain some errors in their feature values. For the purpose of making decision trees robust against such errors, there have been various trials to incorporate fuzzy techniques into decision tree construction. Several researches hove been done on incorporating fuzzy techniques into univariate decision trees. However, for multivariate decision trees, few research has been done in the line of such study. This paper proposes a fuzzy decision tree induction method that builds fuzzy multivariate decision trees named fuzzy oblique decision trees, To show the effectiveness of the proposed method, it also presents some experimental results.

Effective Diagnostic Method Of Breast Cancer Data Using Decision Tree (Decision Tree를 이용한 효과적인 유방암 진단)

  • Jung, Yong-Gyu;Lee, Seung-Ho;Sung, Ho-Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.57-62
    • /
    • 2010
  • Recently, decision tree techniques have been studied in terms of quick searching and extracting of massive data in medical fields. Although many different techniques have been developed such as CART, C4.5 and CHAID which are belong to a pie in Clermont decision tree classification algorithm, those methods can jeopardize remained data by the binary method during procedures. In brief, C4.5 method composes a decision tree by entropy levels. In contrast, CART method does by entropy matrix in categorical or continuous data. Therefore, we compared C4.5 and CART methods which were belong to a same pie using breast cancer data to evaluate their performance respectively. To convince data accuracy, we performed cross-validation of results in this paper.

Waste Database Analysis Joined with Local Information Using Decision Tree Techniques

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.164-173
    • /
    • 2005
  • Data mining is the method to find useful information for large amounts of data in database. It is used to find hidden knowledge by massive data, unexpectedly pattern, relation to new rule. The methods of data mining are decision tree, association rules, clustering, neural network and so on. The decision tree approach is most useful in classification problems and to divide the search space into rectangular regions. Decision tree algorithms are used extensively for data mining in many domains such as retail target marketing, fraud detection, data reduction and variable screening, category merging, etc. We analyze waste database united with local information using decision tree techniques for environmental information. We can use these decision tree outputs for environmental preservation and improvement.

  • PDF

A Decision Tree Induction using Genetic Programming with Sequentially Selected Features (순차적으로 선택된 특성과 유전 프로그래밍을 이용한 결정나무)

  • Kim Hyo-Jung;Park Chong-Sun
    • Korean Management Science Review
    • /
    • v.23 no.1
    • /
    • pp.63-74
    • /
    • 2006
  • Decision tree induction algorithm is one of the most widely used methods in classification problems. However, they could be trapped into a local minimum and have no reasonable means to escape from it if tree algorithm uses top-down search algorithm. Further, if irrelevant or redundant features are included in the data set, tree algorithms produces trees that are less accurate than those from the data set with only relevant features. We propose a hybrid algorithm to generate decision tree that uses genetic programming with sequentially selected features. Correlation-based Feature Selection (CFS) method is adopted to find relevant features which are fed to genetic programming sequentially to find optimal trees at each iteration. The new proposed algorithm produce simpler and more understandable decision trees as compared with other decision trees and it is also effective in producing similar or better trees with relatively smaller set of features in the view of cross-validation accuracy.

Gunnery Classification Method Using Profile Feature Extraction in Infrared Images (적외선 영상에서의 시계열 특징 추출을 이용한 Gunnery 분류 기법 연구)

  • Kim, Jae-Hyup;Cho, Tae-Wook;Chun, Seung-Woo;Lee, Jong-Min;Moon, Young-Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.10
    • /
    • pp.43-53
    • /
    • 2014
  • Gunnery has been used to detect and classify artilleries. In this paper, we used electro-optical data to get the information of muzzle flash from the artilleries. Feature based approach was applied; we first defined features and sub-features. The number of sub-features was 38~40 generic sub-features, and 2 model-based sub-features. To classify multiclass data, we introduced tree structure with clustering the classes according to the similarity of them. SVM was used for each non-leaf nodes in the tree, as a sub-classifier. From the data, we extracted features and sub-features and classified them by the tree structure SVM classifier. The results showed that the performance of our classifier was good for our muzzle flash classification problem.

Decision Tree Learning Algorithms for Learning Model Classification in the Vocabulary Recognition System (어휘 인식 시스템에서 학습 모델 분류를 위한 결정 트리 학습 알고리즘)

  • Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.11 no.9
    • /
    • pp.153-158
    • /
    • 2013
  • Target learning model is not recognized in this category or not classified clearly failed to determine if the vocabulary recognition is reduced. Form of classification learning model is changed or a new learning model is added to the recognition decision tree structure of the model should be changed to a structural problem. In order to solve these problems, a decision tree learning model for classification learning algorithm is proposed. Phonological phenomenon reflected sound enough to configure the database to ensure learning a decision tree learning model for classifying method was used. In this study, the indoor environment-dependent recognition and vocabulary words for the experimental results independent recognition vocabulary of the indoor environment-dependent recognition performance of 98.3% in the experiment showed, vocabulary independent recognition performance of 98.4% in the experiment shown.

Ensemble Based Optimal Feature Selection Algorithm for Efficient Intrusion Detection in Wireless Sensor Network

  • Shyam Sundar S;R.S. Bhuvaneswaran;SaiRamesh L
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2214-2229
    • /
    • 2024
  • Wireless sensor network (WSN) consists of large number of sensor nodes that are deployed in geographical locations to collect sensed information, process data and communicate it to the control station for further processing. Due the unfriendly environment where the sensors are deployed, there exist many possibilities of malicious nodes which performs malicious activities in the network. Therefore, the security threats affect performance and life time of sensor networks, whereas various security aspects are there to address security issues in WSN namely Cryptography, Trust Management, Intrusion Detection System (IDS) and Intrusion Prevention Systems (IPS). However, IDS detect the malicious activities and produce an alarm. These malicious activities exploit vulnerabilities in the network layer and affect all layers in the network. Existing feature selection methods such as filter-based methods are not considering the redundancy of the selected features and wrapper method has high risk of overfitting the classification of intrusion. Due to overfitting, the classification algorithm fails to detect the intrusion in better manner. The main objective of this paper is to provide the efficient feature selection algorithm which was suitable for any type classification algorithm to detect the intrusion in an effective manner. This paper, the security of the network is addressed by proposing Feature Selection Algorithm using Chi Squared with Ensemble Method (FSChE). The proposed scheme employs the combination of decision tree along with the random forest classification algorithm to form ensemble classifier. The experimental results justify the feasibility of the proposed scheme in terms of attack detection, packet delivery ratio and time analysis by employing NSL KDD cup data Set. The obtained results shows that the proposed ensemble method increases the overall performance by 10% to 25% with respect to mentioned parameters.

Seismic Fragility Analysis of Substation Systems by Using the Fault Tree Method (고장수목을 이용한 변전소의 지진취약도 분석)

  • Kim, Min-Kyu;Choun, Young-Sun;Choi, In-Kil;Oh, Keum-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.47-58
    • /
    • 2009
  • In this study, a seismic fragility analysis was performed for substation systems in Korea. To evaluate the seismic fragility function of the substation systems, a fragility analysis of the individual equipment and facilities of the substation systems was first performed, and then all systems were considered in the fragility analysis of the substation systems using a fault-tree method. For this research, the status of the substation systems in Korea was investigated for the classification of the substation systems. Following the classification of the substation systems, target equipment was selected based on previous damage records in earthquake hazards. The substation systems were classified as 765kV, 345kV, and 154kV systems. Transformer and bushing were chosen as target equipment. The failure modes and criteria for transformer and bushing were decided, and fragility analysis performed. Finally, the fragility functions of substation system were evaluated using the fault tree method according to damage status.

A Study on Improving Classification Performance for Manufacturing Process Data with Multicollinearity and Imbalanced Distribution (다중공선성과 불균형분포를 가지는 공정데이터의 분류 성능 향상에 관한 연구)

  • Lee, Chae Jin;Park, Cheong-Sool;Kim, Jun Seok;Baek, Jun-Geol
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.1
    • /
    • pp.25-33
    • /
    • 2015
  • From the viewpoint of applications to manufacturing, data mining is a useful method to find the meaningful knowledge or information about states of processes. But the data from manufacturing processes usually have two characteristics which are multicollinearity and imbalance distribution of data. Two characteristics are main causes which make bias to classification rules and select wrong variables as important variables. In the paper, we propose a new data mining procedure to solve the problem. First, to determine candidate variables, we propose the multiple hypothesis test. Second, to make unbiased classification rules, we propose the decision tree learning method with different weights for each category of quality variable. The experimental result with a real PDP (Plasma display panel) manufacturing data shows that the proposed procedure can make better information than other data mining procedures.