• Title/Summary/Keyword: tree classification method

Search Result 361, Processing Time 0.027 seconds

Predictive Analysis of Problematic Smartphone Use by Machine Learning Technique

  • Kim, Yu Jeong;Lee, Dong Su
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.2
    • /
    • pp.213-219
    • /
    • 2020
  • In this paper, we propose a classification analysis method for diagnosing and predicting problematic smartphone use in order to provide policy data on problematic smartphone use, which is getting worse year after year. Attempts have been made to identify key variables that affect the study. For this purpose, the classification rates of Decision Tree, Random Forest, and Support Vector Machine among machine learning analysis methods, which are artificial intelligence methods, were compared. The data were from 25,465 people who responded to the '2018 Problematic Smartphone Use Survey' provided by the Korea Information Society Agency and analyzed using the R statistical package (ver. 3.6.2). As a result, the three classification techniques showed similar classification rates, and there was no problem of overfitting the model. The classification rate of the Support Vector Machine was the highest among the three classification methods, followed by Decision Tree and Random Forest. The top three variables affecting the classification rate among smartphone use types were Life Service type, Information Seeking type, and Leisure Activity Seeking type.

TREE FORM CLASSIFICATION OF OWNER PAYMENT BEHAVIOUR

  • Hanh Tran;David G. Carmichael;Maria C. A. Balatbat
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.526-533
    • /
    • 2011
  • Contracting is said to be a high-risk business, and a common cause of business failure is related to cash management. A contractor's financial viability depends heavily on how actual payments from an owner deviate from those defined in the contract. The paper presents a method for contractors to evaluate the punctuality and fullness of owner payments based on historical behaviour. It does this by classifying owners according to their late and incomplete payment practices. A payment profile of an owner, in the form of aging claims submitted by the contractor, is used as a basis for the method's development. Regression trees are constructed based on three predictor variables, namely, the average time to payment following a claim, the total amount ending up being paid within a certain period and the level of variability in claim response times. The Tree package in the publicly available R program is used for building the trees. The analysis is particularly useful for contractors at the pre-tendering stage, when contractors predict the likely payment scenario in an upcoming project. Based on the method, the contractor can decide whether to tender or not tender, or adjust its financial preparations accordingly. The paper is a contribution in risk management applied to claim and dispute resolution practice. It is argued that by contractors having a better understanding of owner payment behaviour, fewer disputes and contractor business failures will occur.

  • PDF

Performance Improvement of Classification Between Pathological and Normal Voice Using HOS Parameter (HOS 특징 벡터를 이용한 장애 음성 분류 성능의 향상)

  • Lee, Ji-Yeoun;Jeong, Sang-Bae;Choi, Hong-Shik;Hahn, Min-Soo
    • MALSORI
    • /
    • no.66
    • /
    • pp.61-72
    • /
    • 2008
  • This paper proposes a method to improve pathological and normal voice classification performance by combining multiple features such as auditory-based and higher-order features. Their performances are measured by Gaussian mixture models (GMMs) and linear discriminant analysis (LDA). The combination of multiple features proposed by the frame-based LDA method is shown to be an effective method for pathological and normal voice classification, with a 87.0% classification rate. This is a noticeable improvement of 17.72% compared to the MFCC-based GMM algorithm in terms of error reduction.

  • PDF

Breast Cancer Diagnosis using Naive Bayes Analysis Techniques (Naive Bayes 분석기법을 이용한 유방암 진단)

  • Park, Na-Young;Kim, Jang-Il;Jung, Yong-Gyu
    • Journal of Service Research and Studies
    • /
    • v.3 no.1
    • /
    • pp.87-93
    • /
    • 2013
  • Breast cancer is known as a disease that occurs in a lot of developed countries. However, in recent years, the incidence of Korea's modern woman is increased steadily. As well known, breast cancer usually occurs in women over 50. In the case of Korea, however, the incidence of 40s with young women is increased steadily than the West. Therefore, it is a very urgent task to build a manual to the accurate diagnosis of breast cancer in adult women in Korea. In this paper, we show how using data mining techniques to predict breast cancer. Data mining refers to the process of finding regular patterns or relationships among variables within the database. To this, sophisticated analysis using the model, you will find useful information that is easily revealed. In this paper, through experiments Deicion Tree Naive Bayes analysis techniques were compared using analysis techniques to diagnose breast cancer. Two algorithms was analyzed by applying C4.5 algorithm. Deicison Tree classification accuracy was fairly good. Naive Bayes classification method showed better accuracy compared to the Decision Tree method.

  • PDF

Predicting Tree Felling Direction Using Path Distance Back Link in Geographic Information Systems (GIS)

  • Rhyma Purnamasayangsukasih Parman;Mohd Hasmadi, Ismail;Norizah Kamarudin;Nur Faziera Yaakub
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.4
    • /
    • pp.203-212
    • /
    • 2023
  • Directional felling is a felling method practised by the Forestry Department in Peninsular Malaysia as prescribed in Field Work Manual (1997) for Selective Management Systems (SMS) in forest harvesting. Determining the direction of tree felling in Peninsular Malaysia is conducted during the pre-felling inventory 1 to 2 years before the felling operation. This study aimed to predict and analyze the direction of tree felling using the vector-based path distance back link method in Geographic Information Systems (GIS) and compare it with the felling direction observed on the ground. The study area is at Balah Forest Reserve, Kelantan, Peninsular Malaysia. A Path Distance Back Link (spatial analyst) function in ArcGIS Pro 3.0 was used in predicting tree felling direction. Meanwhile, a binary classification was used to compare the felling direction estimated using GIS and the tree felling direction observed on the ground. Results revealed that 61.3% of 31 trees predicted using the vector-based projection method were similar to the felling direction observed on the ground. It is important to note that dynamic changes of natural constraints might occur in the middle of tree felling operation, such as weather problems, wind speed, and unpredicted tree falling direction.

A Condition Processing System of Active Rules Using Analyzing Condition Predicates (조건 술어 분석을 이용한 능동규칙의 조건부 처리 시스템)

  • Lee, Gi-Uk;Kim, Tae-Sik
    • The KIPS Transactions:PartD
    • /
    • v.9D no.1
    • /
    • pp.21-30
    • /
    • 2002
  • The active database system introduces the active rules detecting specified state. As the condition evaluation of the active rules is performed every time an event occurs, the performance of the system has a great influence, depending on the conditions processing method. In this paper, we propose the conditions processing system with the preprocessor which determines the delta tree structure, constructs the classification tree, and generates the aggregate function table. Due to the characteristics of the active database through which the active rules can be comprehended beforehand, the preprocessor can be introduced. In this paper, the delta tree which can effectively process the join, selection operations, and the aggregate function is suggested, and it can enhance the condition evaluation performance. And we propose the classification tree which effectively processes the join operation and the aggregate function table processing the aggregate function which demands high cost. In this paper, the conditions processing system can be expected to enhance the performance of conditions processing in the active rules as the number of conditions comparison decreases because of the structure which is made in the preprocessor.

Land Surface Classification With Airborne Multi-spectral Scanner Image Using A Neuro-Fuzzy Model (뉴로-퍼지 모델을 이용한 항공다중분광주사기 영상의 지표면 분류)

  • Han, Jong-Gyu;Ryu, Keun-Ho;Yeon, Yeon-Kwang;Chi, Kwang-Hoon
    • The KIPS Transactions:PartD
    • /
    • v.9D no.5
    • /
    • pp.939-944
    • /
    • 2002
  • In this paper, we propose and apply new classification method to the remotely sensed image acquired from airborne multi-spectral scanner. This is a neuro-fuzzy image classifier derived from the generic model of a 3-layer fuzzy perceptron. We implement a classification software system with the proposed method for land cover image classification. Comparisons with the proposed and maximum-likelihood classifiers are also presented. The results show that the neuro-fuzzy classification method classifies more accurately than the maximum likelihood method. In comparing the maximum-likelihood classification map with the neuro-fuzzy classification map, it is apparent that there is more different as amount as 7.96% in the overall accuracy. Most of the differences are in the "Building" and "Pine tree", for which the neuro-fuzzy classifier was considerably more accurate. However, the "Bare soil" is classified more correctly with the maximum-likelihood classifier rather than the neuro-fuzzy classifier.

A Study on the Improvement of Multitree Pattern Recognition Algorithm (Multitree 형상 인식 기법의 성능 개선에 관한 연구)

  • 김태성;이정희;김성대
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.4
    • /
    • pp.348-359
    • /
    • 1989
  • The multitree pattern recognition algorithm proposed by [1] and [2] is modified in order to improve its performance. The basic idea of the multitree pattern classification algorithm is that the binary dceision tree used to classify an unknow pattern is constructed for each feature and that at each stage, classification rule decides whether to classify the unknown pattern or to extract the feature value according to the feature ordet. So the feature ordering needed in the calssification procedure is simple and the number of features used in the classification procedure is small compared with other classification algorithms. Thus the algorithm can be easily applied to real pattern recognition problems even when the number of features and that of the classes are very large. In this paper, the wighting factor assignment scheme in the decision procedure is modified and various classification rules are proposed by means of the weighting factor. And the branch and bound method is applied to feature subset selection and feature ordering. Several experimental results show that the performance of the multitree pattern classification algorithm is improved by the proposed scheme.

  • PDF

Optimum seismic design of reinforced concrete frame structures

  • Gharehbaghi, Sadjad;Moustafa, Abbas;Salajegheh, Eysa
    • Computers and Concrete
    • /
    • v.17 no.6
    • /
    • pp.761-786
    • /
    • 2016
  • This paper proposes an automated procedure for optimum seismic design of reinforced concrete (RC) frame structures. This procedure combines a smart pre-processing using a Tree Classification Method (TCM) and a nonlinear optimization technique. First, the TCM automatically creates sections database and assigns sections to structural members. Subsequently, a real valued model of Particle Swarm Optimization (PSO) algorithm is employed in solving the optimization problem. Numerical examples on design optimization of three low- to high-rise RC frame structures under earthquake loads are presented with and without considering strong column-weak beam (SCWB) constraint. Results demonstrate the effectiveness of the TCMin seismic design optimization of the structures.

Opinion Extraction based on Syntactic Pieces

  • Aoki, Suguru;Yamamoto, Kazuhide
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2007.11a
    • /
    • pp.76-85
    • /
    • 2007
  • This paper addresses a task of opinion extraction from given documents and its positive/negative classification. We propose a sentence classification method using a notion of syntactic piece. Syntactic piece is a minimum unit of structure, and is used as an alternative processing unit of n-gram and whole tree structure. We compute its semantic orientation, and classify opinion sentences into positive or negative. We have conducted an experiment on more than 5000 opinion sentences of multiple domains, and have proven that our approach attains high performance at 91% precision.

  • PDF