The Journal of Korean Institute of Communications and Information Sciences (한국통신학회논문지)
- Volume 14 Issue 4
- /
- Pages.348-359
- /
- 1989
- /
- 1226-4717(pISSN)
- /
- 2287-3880(eISSN)
A Study on the Improvement of Multitree Pattern Recognition Algorithm
Multitree 형상 인식 기법의 성능 개선에 관한 연구
Abstract
The multitree pattern recognition algorithm proposed by [1] and [2] is modified in order to improve its performance. The basic idea of the multitree pattern classification algorithm is that the binary dceision tree used to classify an unknow pattern is constructed for each feature and that at each stage, classification rule decides whether to classify the unknown pattern or to extract the feature value according to the feature ordet. So the feature ordering needed in the calssification procedure is simple and the number of features used in the classification procedure is small compared with other classification algorithms. Thus the algorithm can be easily applied to real pattern recognition problems even when the number of features and that of the classes are very large. In this paper, the wighting factor assignment scheme in the decision procedure is modified and various classification rules are proposed by means of the weighting factor. And the branch and bound method is applied to feature subset selection and feature ordering. Several experimental results show that the performance of the multitree pattern classification algorithm is improved by the proposed scheme.
본 논문은 [1]와 [2]에 의해 제안된 multitree 형상 인식 기법의 성능 개선에 관한 논문이다. Multitree 형상 인식 기법의 기본적인 생각은, Classifier 설계과정에서 각 특징별로 Binary Decision Tree 를 구성하고, 이들의 탐색 순서를 결정하며, 인식 과정에서는 앞에서 정한 탐색 순서에 의거하여, BDT(Binary Decision Tree)를 탐색해 나간다는 것이다. 이때 BDT를 추가하여 탐색하기 전에 그때까지 얻은 정보를 이용하여 입력 물체를 인식할 수 있는지에 대한 여부를 결정하며, 인식이 가능한 경우 BDT의 탐색을 멈추고, 인식이 불가능한 경우 BDT의 탐색을 계속해 나간다. 이 방법은 BDT를 각 특징별로 만들기 때문에 새로운 특징의 삭제나 첨가가 상당히 용이하며 인식에 사용되는 특징의 갯수가 감소하게 된다. 따라서 이 알고리즘은 특징의 수가 많거나 class수가 많을 경우 쉽게 이용될 수 있다. 본 논문은 각 특징에서 구한 근사화된 확률 분포로부터 입력 특징값에 대한 확률값을 구해 인식에 이용하였으며, 이 값을 이용한ㄴ 여러가지 인식 방법을 제안하였다. 그리고 Branch and Bound 방법을 사용하여 특징의 선택 순서와 탐색 범위를 구하였다. 위에서 제안한 것들을 실험한 결과 기존의 multitree형상 인식 기법보다 본 논문에서 제안한 기법의 성능이 향상되었다.
Keywords