• Title/Summary/Keyword: tree classification method

Search Result 361, Processing Time 0.027 seconds

Web Document Classification Based on Hangeul Morpheme and Keyword Analyses (한글 형태소 및 키워드 분석에 기반한 웹 문서 분류)

  • Park, Dan-Ho;Choi, Won-Sik;Kim, Hong-Jo;Lee, Seok-Lyong
    • The KIPS Transactions:PartD
    • /
    • v.19D no.4
    • /
    • pp.263-270
    • /
    • 2012
  • With the current development of high speed Internet and massive database technology, the amount of web documents increases rapidly, and thus, classifying those documents automatically is getting important. In this study, we propose an effective method to extract document features based on Hangeul morpheme and keyword analyses, and to classify non-structured documents automatically by predicting subjects of those documents. To extract document features, first, we select terms using a morpheme analyzer, form the keyword set based on term frequency and subject-discriminating power, and perform the scoring for each keyword using the discriminating power. Then, we generate the classification model by utilizing the commercial software that implements the decision tree, neural network, and SVM(support vector machine). Experimental results show that the proposed feature extraction method has achieved considerable performance, i.e., average precision 0.90 and recall 0.84 in case of the decision tree, in classifying the web documents by subjects.

Combining Multiple Classifiers for Automatic Classification of Email Documents (전자우편 문서의 자동분류를 위한 다중 분류기 결합)

  • Lee, Jae-Haeng;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.3
    • /
    • pp.192-201
    • /
    • 2002
  • Automated text classification is considered as an important method to manage and process a huge amount of documents in digital forms that are widespread and continuously increasing. Recently, text classification has been addressed with machine learning technologies such as k-nearest neighbor, decision tree, support vector machine and neural networks. However, only few investigations in text classification are studied on real problems but on well-organized text corpus, and do not show their usefulness. This paper proposes and analyzes text classification methods for a real application, email document classification task. First, we propose a combining method of multiple neural networks that improves the performance through the combinations with maximum and neural networks. Second, we present another strategy of combining multiple machine learning classifiers. Voting, Borda count and neural networks improve the overall classification performance. Experimental results show the usefulness of the proposed methods for a real application domain, yielding more than 90% precision rates.

A Machine Learning Approach to Web Image Classification (기계학습 기반의 웹 이미지 분류)

  • Cho, Soo-Sun;Lee, Dong-Woo;Han, Dong-Won;Hwang, Chi-Jung
    • The KIPS Transactions:PartB
    • /
    • v.9B no.6
    • /
    • pp.759-764
    • /
    • 2002
  • Although image occupies a large part of importance on the Web documents, there have not been many researches for analyzing and understanding it. Many Web images are used for carrying important information but others are not used for it. In this paper classify the Web images from presently served Web sites to erasable or non-erasable classes. based on machine learning methods. For this research, we have detected 16 special and rich features for Web images and experimented by using the Baysian and decision tree methods. As the results, F-measures of 87.09%, 82.72% were achived for each method and particularly, from the experiments to compare the effects of feature groups, it has proved that the added features on this study are very useful for Web image classification.

API Feature Based Ensemble Model for Malware Family Classification (악성코드 패밀리 분류를 위한 API 특징 기반 앙상블 모델 학습)

  • Lee, Hyunjong;Euh, Seongyul;Hwang, Doosung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.3
    • /
    • pp.531-539
    • /
    • 2019
  • This paper proposes the training features for malware family analysis and analyzes the multi-classification performance of ensemble models. We construct training data by extracting API and DLL information from malware executables and use Random Forest and XGBoost algorithms which are based on decision tree. API, API-DLL, and DLL-CM features for malware detection and family classification are proposed by analyzing frequently used API and DLL information from malware and converting high-dimensional features to low-dimensional features. The proposed feature selection method provides the advantages of data dimension reduction and fast learning. In performance comparison, the malware detection rate is 93.0% for Random Forest, the accuracy of malware family dataset is 92.0% for XGBoost, and the false positive rate of malware family dataset including benign is about 3.5% for Random Forest and XGBoost.

Practice of causal inference with the propensity of being zero or one: assessing the effect of arbitrary cutoffs of propensity scores

  • Kang, Joseph;Chan, Wendy;Kim, Mi-Ok;Steiner, Peter M.
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.1
    • /
    • pp.1-20
    • /
    • 2016
  • Causal inference methodologies have been developed for the past decade to estimate the unconfounded effect of an exposure under several key assumptions. These assumptions include, but are not limited to, the stable unit treatment value assumption, the strong ignorability of treatment assignment assumption, and the assumption that propensity scores be bounded away from zero and one (the positivity assumption). Of these assumptions, the first two have received much attention in the literature. Yet the positivity assumption has been recently discussed in only a few papers. Propensity scores of zero or one are indicative of deterministic exposure so that causal effects cannot be defined for these subjects. Therefore, these subjects need to be removed because no comparable comparison groups can be found for such subjects. In this paper, using currently available causal inference methods, we evaluate the effect of arbitrary cutoffs in the distribution of propensity scores and the impact of those decisions on bias and efficiency. We propose a tree-based method that performs well in terms of bias reduction when the definition of positivity is based on a single confounder. This tree-based method can be easily implemented using the statistical software program, R. R code for the studies is available online.

Tree Based Cluster Analysis Using Reference Data (배경자료를 이용한 나무구조의 군집분석)

  • 최대우;구자용;최용석
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.3
    • /
    • pp.535-545
    • /
    • 2004
  • The clustering method suggested in this paper produces clusters based on the 'rules of variables' by merging the 'training' and the identically structured reference data and then by filtering it to obtain the clusters of the 'training data' through the use of the 'tree classification model'. The reference dataset is generated by spatially contrasting it to the 'training data' through the 'reverse arcing' algorithm to effectively identify the clusters. The strength of this method is that it can be applied even to the mixture of continuous and discrete types of 'training data' and the performance of this algorithm is illustrated by applying it to the simulated data as well as to the actual data.

Research on the Hybrid Paragraph Detection System Using Syntactic-Semantic Analysis (구문의미 분석을 활용한 복합 문단구분 시스템에 대한 연구)

  • Kang, Won Seog
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.1
    • /
    • pp.106-116
    • /
    • 2021
  • To increase the quality of the system in the subjective-type question grading and document classification, we need the paragraph detection. But it is not easy because it is accompanied by semantic analysis. Many researches on the paragraph detection solve the detection problem using the word based clustering method. However, the word based method can not use the order and dependency relation between words. This paper suggests the paragraph detection system using syntactic-semantic relation between words with the Korean syntactic-semantic analysis. This system is the hybrid system of word based, concept based, and syntactic-semantic tree based detection. The experiment result of the system shows it has the better result than the word based system. This system will be utilized in Korean subjective question grading and document classification.

Random Forest Classifier-based Ship Type Prediction with Limited Ship Information of AIS and V-Pass

  • Jeon, Ho-Kun;Han, Jae Rim
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.4
    • /
    • pp.435-446
    • /
    • 2022
  • Identifying ship types is an important process to prevent illegal activities on territorial waters and assess marine traffic of Vessel Traffic Services Officer (VTSO). However, the Terrestrial Automatic Identification System (T-AIS) collected at the ground station has over 50% of vessels that do not contain the ship type information. Therefore, this study proposes a method of identifying ship types through the Random Forest Classifier (RFC) from dynamic and static data of AIS and V-Pass for one year and the Ulsan waters. With the hypothesis that six features, the speed, course, length, breadth, time, and location, enable to estimate of the ship type, four classification models were generated depending on length or breadth information since 81.9% of ships fully contain the two information. The accuracy were average 96.4% and 77.4% in the presence and absence of size information. The result shows that the proposed method is adaptable to identifying ship types.

A study on the comparison of descriptive variables reduction methods in decision tree induction: A case of prediction models of pension insurance in life insurance company (생명보험사의 개인연금 보험예측 사례를 통해서 본 의사결정나무 분석의 설명변수 축소에 관한 비교 연구)

  • Lee, Yong-Goo;Hur, Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.1
    • /
    • pp.179-190
    • /
    • 2009
  • In the financial industry, the decision tree algorithm has been widely used for classification analysis. In this case one of the major difficulties is that there are so many explanatory variables to be considered for modeling. So we do need to find effective method for reducing the number of explanatory variables under condition that the modeling results are not affected seriously. In this research, we try to compare the various variable reducing methods and to find the best method based on the modeling accuracy for the tree algorithm. We applied the methods on the pension insurance of a insurance company for getting empirical results. As a result, we found that selecting variables by using the sensitivity analysis of neural network method is the most effective method for reducing the number of variables while keeping the accuracy.

  • PDF

Distinguishing Referential Expression 'Geot' Using Decision Tree (결정 트리를 이용한 지시 표현 '것'의 구별)

  • Jo, Eun-Kyoung;Kim, Hark-Soo;Seo, Jung-Yun
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.9
    • /
    • pp.880-888
    • /
    • 2007
  • Referential expression 'Geot' is often occurred in Korean dialogues. However, it has not been properly dealt with by the previous researchers of reference resolution, since it is not by itself the referential expression like pronoun and definite noun phrases, and it has never been discriminated from non-referring 'geot'. To resolve this problem, we establish a feature set which is based on the linguistic property of 'geot' and the discourse property of its text, and propose a method to identify referential 'geot' from non-referring 'geot' using decision tree. In the experiment, our system achieved the F-measures of 92.3% for non-referring geot and of 82.2% for referential geot and the total classification performance of 89.27%, and outperformed the classification system based on pattern rules.