• Title/Summary/Keyword: tree classification

Search Result 938, Processing Time 0.028 seconds

Plant Community Structure for Five Major Valleys in Bukhansan National Park (북한산 국립공원 주요 5개 계곡의 식물군집구조)

  • Lee, Kyung-Jae;Cho, Woo;Hwang, Seo-Hyun
    • Korean Journal of Environment and Ecology
    • /
    • v.9 no.1
    • /
    • pp.15-29
    • /
    • 1995
  • To investigate plant community structure of Uiryung valley, Harujae valley, Kugi valley, Songchu valley, Tobongsan valley in Bukhansan National Park, each thirty eight, forty, twenty six. twenty eight, thirty six plots (plot size 100$m^2$) were set up and surveyed. The surveyed data were integrated and classification by TWINSPAN and DCA ordination techniques were applied to the study area. The plant community were divided into nine groups in seventy nine plots by TWINBPAN and the dividing groups were Carpinus laxiflora community(I), Quercus mongolica community(II), Pinus densiflora community(III), Q. mongolica-P. densiflora community(IV) Q. mongolica-Q. serrata- Prunus sargentii community(V), Q. mongolica Q. variabilis community(Ⅵ), Robinia pseudoacacia-Q. serrata community(Ⅶ). P. rigida-Q. serrata community(Ⅷ), Q. mongolica- Q. variabilis- Styrax obassia community(Ⅸ). So the successional trends of tree species at the natural forest seem to be from P. densiflora to Q. mongolica and at the artificial forest seem to be from R. pseudoacacia, P. rigida to Q. acutissima, Fraxinus rhynchophylla in canopy layer And in the subtree and shrub layer, it wag supposed that from Deotzia prunifolia, Rhus trichocarpa. Rhododendron yedoense var. poukhasleilse, Euonymus oxyphyllous to Magnolia sieboldii, Acer psuedo-sieboldianum, Lindera obtusiloba. In comparing successional trends with past study, it was postulated that successtion is not progressed by human disturbance and soil acidification by the air pollution.

  • PDF

Forest Community Classification and Vegetation Structure in National Yonghyeon Natural Recreation Forest (용현자연휴양림 일대의 산림군락분류와 식생구조)

  • Shin, Jae-Kwon;Byeon, Jun-Gi;Yun, Chung-Weon;Koo, Bon Youl;Kim, Han-Gyeoul;Kim, In-Sik;Kim, Dong-Kap
    • Korean Journal of Environment and Ecology
    • /
    • v.31 no.2
    • /
    • pp.220-229
    • /
    • 2017
  • This study was carried out to investigate the forest community classification and vegetation structure in NYNRF(National Yonghyeon Natural Recreation Forest). We studied by 26 plots($20{\times}20m$) from April to September 2014. NYNRF were classified into the Quercus mongolica Community, Quercus variabilis community and Acer pictum community in the 3 community units. The Q. mongolica Community was subdivided into the Pinus densiflora group and Typical group and A. pictum community was also subdivided into the Euonymus sachalinensis group and Typical group. NYNRF were classified into 3 communities and 4 groups and 5 VU(vegetation units). According to the result of importance value analysis between vegetation units, VU 1 P. densiflora(65.1%), VU 2 Q. mongolica(73.6%), VU 3 Q. variabilis(75.1%), VU 4 E. sachalinensis(33.3%) and VU 5 Lindera erythrocarpa(27.1%) were highly showed in tree layer and VU 1 Rhododendron mucronulatum (19.3%), VU 2 Calamagrostis arundinacea (16.9%), VU 3 Indigofera kirilowii (75.1%), VU 4 and VU 5 Pseudostellaria heterophylla(each other 14.8% and 24.7%) were highly showed in herb layer. In INSPAN(INdicator SPecies ANalysis) of vegetation units, 33 species were analyzed significantly(p<0.05).

The classification and comparison of genetic diversity of genus Malus using RAPD (RAPD를 이용한 능금속 식물종의 계통관계와 유전적 다양성)

  • Huh, Man-Kyu
    • Journal of Life Science
    • /
    • v.17 no.6 s.86
    • /
    • pp.756-761
    • /
    • 2007
  • Cenus Malus is a long-lived woody species primarily distributed throughout Asia. Many species of this genus are regarded as agriculturally and ecologically important. The phynetics and genetic diversity among eight species of genus Malus were reconstructed using the random amplified polymorphic DNA (RAPD) markers. In a simple measure of intraspecies variability by the percentage of polymorphic bands, the M. micromalus exhibited the lowest variation (34.7%). The M. pumila showed the highest (50.0%). Mean number of alleles per locus (A) ranged from 1.347 to 1.500 with a mean of 1.437. The phenotypic frequency of each band was calculated and used in estimating genetic diversify (H) within species. The mean of H was 0.190 across species, varying from 0.155 to 0.220. In particular, two cultivated species, M. pumila and M. asiatica, had high expected diversity, 0.314 and 0.307, respectively. On a per locus basis, the proportion of total genetic variation due to differences among species ranged from 0.388 to 0.472 with a mean of 0.423, indicating that 42.3% of the total variation was found among species. The phylogenetic tree showed three distinct elates. One includes M. sieversii, M. pumila, and M. asiatica. Another includes three M. baccata taxa. The other includes M. sieboldii, M. floribunsa, and M. micromalus. One variety and one form of M. sieboldii were well separated each other. RAPD markers are useful in germ-plasm classification of genus Malus and evolutionary studies.

Classification of Forest Vegetation for a Forest Genetic Resource Reserve in Mt. Seondalsan, Bongwha (봉화 선달산 산림유전자원보호구역의 산림식생 유형)

  • Lee, Jeong Eun;Lee, Cheul Ho;Yun, Chung Weon
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • In this study, the structure of forest vegetation in Mt. Seondalsan, Bongwha-gun, was analyzed. Vegetation data were collected in 137 quadrat plots using the Z-M phytosociological method from June to October 2018. These data were analyzed using vegetation classification, importance value,and species diversity. Consequently, vegetation was classified as a Quercus mongolica community group that was divided into four communities: Cornus controversa, Phlomis umbrosa, Pinus densiflora, and Q. mongolica communities. The C. controversa community was subdivided into Magnolia sieboldii and Parthenocissus tricuspidata groups; the P. densiflora community was divided into Vaccinium hirtum var. koreanum, Quercus variabilis, and P. densiflora groups. In the C. controversa community, the M. sieboldii group was divided into the Acer mandshuricum and M. sieboldii subgroups, whereas the P. tricuspidata group was divided into the Larix kaempferi, Pinus koraiensis, and P. tricuspidata subgroups. In the P. densiflora community, the V. hirtum var. koreanum group was divided into the Rhododendron micranthum and V. hirtum var. koreanum subgroups. According to importance value analysis, C. controversa, L. kaempferi, P. koraiensis, Q. mongolica, Acer pictum subsp. mono, P. densiflora, and Q. variabilis were mainly indicated to have high value in the tree layer. The species diversity of Mt. Seondalsan was 1.969, which was greater than that of another Forest Genetic Resource Reserve.

Relationships between Community Unit and Environment Factor in Forest Vegetation of Mt. Dutasan, Pyeongchang-gun (평창 두타산 산림식생의 군집유형과 입지환경요인의 상관관계)

  • Lee, Jeong Eun;Shin, Jae Kwon;Kim, Dong Gap;Yun, Chung Weon
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.3
    • /
    • pp.275-287
    • /
    • 2017
  • The purpose of this study was to analyze forest vegetation type classification and relationships between the type and environment factor in Mt. Dutasan. Data were collected by total of forty six plots using Z-M phytosociological method from June to October, 2016, and analyzed by vegetation classification, canopy layer structure and relationships between vegetation unit and environment factor using coincidence methods. As a result of vegetation type classification, Quercus mongolica community group was classified at a top level of vegetation hierarchy that was classified into Rhododendron schlippenbachii community and Betula costata community. R. schlippenbachii community was divided into Lychnis cognata group and R. schlippenbachii typical group. L. cognata group was subdivided into Veratrum oxysepalum subgroup and L. cognata typical subgroup. B. costata community was divided into Fraxinus mandshurica group and Betula schmidtii group. F. mandshurica group was subdivided into Weigela subsessilis subgroup and Cimicifuga heracleifolia subgroup. Therefore the forest vegetation was composed of six vegetation units with two kinds of bisected species groups and fourteen species groups. As the result of an analysis of canopy layer structure, there were two kinds of structures with monotonous structures V. oxysepalum subgroup (vegetation units 1), L. cognata typical subgroup (vegetation units 2), W. subsessilis subgroup (vegetation units 4) and complicated structures R. schlippenbachii typical group (vegetation units 3), C. heracleifolia subgroup (vegetation units 5), Betula schmidtii group (vegetation units 6). The vertical layer structure of vegetation unit 5 was the most developed and vegetation unit 6 had the lowest coverage of herb layer. According to the correlation between vegetation unit and environmental factor, R. schlippenbachii community (vegetation units 1~3) and B. costata community (vegetation units 4~6) were classified based on 1,100 m of altitude, middle slope, twenty of slope degree, twenty percents of bare rock and thirty centimeters of DBH in tree layer. R. schlippenbachii community (vegetation units 1~3) showed positive correlation with altitude, topography and B. costata community (vegetation units 4~6) showed negative correlation tendency with them.

Forest Vegetation Classification and Quantitative Analysis of Picea jezoensis and Abies hollophylla stand in Mt. Gyebang (계방산 가문비나무 및 전나무 임분의 산림식생유형분류와 정량적 분석)

  • Ko, Seung-Yeon;Han, Sang-Hak;Lee, Won-Hee;Han, Sim-Hee;Shin, Hak-Sub;Yun, Chung-Weon
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.2
    • /
    • pp.182-196
    • /
    • 2014
  • In this study, for the forest vegetation classification and the quantitative analysis of the Picea jezoensis and Abies hollophylla stand, the type classification of the vegetation structure was performed with Z-M phytosociological method, and as a result, it was classified into the Picea jenoensis community and the Abies holophylla community in the community unity. The Picea jezoensis community was subdivided into the Rosa koreana group and the Acer ukurunduense group in the group unity and the Abies holophylla community was subdivided into the Acer mandshuricum group and the Lindera obtusiloba group. In the results of estimating the importance value based on the classified vegetation unity, it was deemed that the dominance of the Picea jezoensis would be continued for a while as the importance value from the tree layers of vegetation unity 1 and 2 represented relatively high with 30.73% and 20.25%. In addition, in the results of analyzing the species diversity to estimate the maturity of the community, the species diversity index of the vegetation unity 4 was the lowest with 0.6976 and that of vegetation unity 2 was the highest with 1.1256. As in the similarity between the communities, the vegetation unit 1 and 4 and the vegetation unit 2 and 4 represented low with 0.2880 and 0.3626, respectively, and the similarity between the vegetation unit 1 and 2 and between 2 and 4 represented 0.5411 and 0.5041, respectively, it was deemed that they were the communities that the difference in the composition species between the communities was not big. In the results of analyzing the Chi-square matrix and the catalog of constellations for the interspecific, they were divided mainly into two types, and type 1 plant species were mostly differential species and the characteristic species, which appeared in the Picea jezoensis community classified phytosociologically, and type II plant species were mostly the species appearing in the Abies holophylla community growing in the relatively damp places. Such results is deemed that the positive (+) correlation is recognized among the species, of which growing environments are similar, and the negative (-) correlation .represents among the species, of which preferential environments are different.

Studies on the Morphological, Physical and Chemical Properties of the Korean Forest soil in Relation to the Growth of Korean White Pine and Japanese Larch (한국산림토양의 형태학적 및 이화학적성질과 낙엽송, 잣나무의 성장(成長)에 관한 연구(硏究))

  • Chung, In-Koo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.12 no.4
    • /
    • pp.189-213
    • /
    • 1980
  • 1. Aiming at supply of basic informations on tree species siting and forest fertilization by understanding of soil properties that are demanded by each tree species through studies of forest soil's morphological, physical and chemical properties in relation to tree growth in our country, the necessary data have been collected in the last 10 years, are quantified according to quantification theory and are analyzed in accordance with multi-variate analysis. 2. Test species, larch and the Korean white pine, are plantable in extensive areas from mid to north in the temperate zone and are the two most recommended reforestation tree species in Korea. However, their respective site demands are not known and they have been in confusion or considered demanding the same site during reforestation. When the Korean white pine is planted in larch sites, it has shown relatively good growth. But, when larch is planted in the Korean white pine site it can be hardly said that the larch growth is good. To understand on such a difference soil factors have been studied so as to see how the soil's morphological, physical and chemical factors affect tree growth helped with the electronic computer. 3. All the stands examined are man-made mature forests. From 294 larch plots and 259 white pine plots dominant trees are cut as samples and through stem analysis site index is determined. For each site index soil profiles are made in the related forest-land for analysis. Soil samples are taken from each profile horizon and forest-land productivity classification tables are worked out through physical and chemical analysis of the soil samples for each tree species for the study of relationships between physical, chemical and the combined physical/chemical properties of soil and tree growth. 4. In the study of relationships between physical properties of soil and tree growth it is found out that larch growth is influenced by the following factors in the order of deposit form, soil depth, soil moisture, altitude, relief, soil type, depth of A-horizon, soil consistency content of organic matter soil texture bed rock gravel content aspect and slope. For the Korean white pine the influencing factors' order is soil type, soil consistency bed rock aspect depth of A-horizon soil moisture altitude relief deposit form soil depth soil texture gravel content and slope. 5. In the study of relationships between chemical properties of soil and tree growth it is found out that larch growth is influenced by the following factors in the order of base saturation organic matter CaO C/N ratio, effective $P_2O_5$ PH.exchangeable $K_2O$ T-N MgO C E C Total Base and Na. For the Korean white pine the influencing factors' order is effective $P_2O_5$ Total Base T-N Na C/N ratio PH CaO base saturation organic matter exchangeable $K_2O$ C E C and MgO. 6. In the study of relationships between the combined physical and chemical properties of soil and tree growth it is found out that larch growth is influenced by the following factors in the order of soil depth deposit form soil moisture PH relief soil type altitude T-N soil consistency effective $P_2O_5$ soil texture depth of A-horizon Total Base exchangeable $K_2O$ and base saturation. For the Korean white pine the influencing factors' order is soil type soil consistency aspect effective $P_2O_5$ depth of A-horizon exchangeable $K_2O$ soil moisture Total Base altitude soil depth base saturation relief T-N C/N ratio and deposit from. 7. In the multiple regression of forest soil's physical properties larch's correlation coefficient is 0.9272 and for the Korean white pine it is 0.8996. With chemical properties larch has 0.7474 and the Korean white pine has 0.7365. So, the soil's physical properties are found out more closely related with tree growth than chemical properties. However, this seems due to inadequate expression of soil's chemical factors and it is proved that the chemical properties are not less important than the physical properties. In the multiple regression of the combined physical and chemical properties consisting of important morphological and physical factors as well as chemical factors of forest soils larch's multiple correlation coefficient is found out to be 0.9434 and for the Korean white pine it is 0.9103 leading to the highest correlation. 8. As shown in the partial correlation coefficients larch needs deeper soil depth than the Korean white pine and in the deposit form colluvial and creeping soils are demanded by the larch. Adequately moist to too moist should be soil moisture and PH should be from 5.5 to 6.1 for the larch. Demands of T-N soil texture and soil nutrients are higher for the larch than the Korean white pine. Thus, soil depth, deposit form, relief soil moisture PH N altitude and soil texture are good indicators for species sitings with larch and the Korean white pine while soil type and soil consistency are indicative only limitedly of species sitings due to their wide variation as plantation environments. For larch siting soil depth deposit form relief soil moisture PH soil type N and soil texture are indicators of good growth and for Korean white pine they are soil type soil consistency effective $P_2O_5$ and exchangeable $K_2O$, which is demanded more by the Korean white pine than larch generally. 9. Physical properties of soil has been known as affecting tree growth to greatest extent so far. However, as a result of this study it is proved through computer analysis that chemical properties of soil are not less important factors for tree growth than chemical properties and site demands for larch and the Korean white pine that have been uncertain So far could be clarified.

  • PDF

Analysis on the Relation between the Morphological Physical and Chemical Properties of Forest Soils and the Growth of the Pinus koraiensis Sieb. et Zucc. and Larix leptolepis Gord by Quantification (수량화(數量化)에 의(依)한 우리나라 삼림토양(森林土壤)의 형태학적(形態学的) 및 이화학적(理化学的) 성질(性質)과 잣나무 및 낙엽송(落葉松)의 생장(生長) 상관분석(相關分析))

  • Chung, In Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.53 no.1
    • /
    • pp.1-26
    • /
    • 1981
  • 1. Aiming at supply of basic informations on tree species siting and forest fertilization by understanding of soil properties that are demanded by each tree species through studies of forest soil's morphological, physical and chemical properties in relation to tree growth in our country, the necessary data have been collected in the last 10 years, are quantified according to quantification theory and are analyzed in sccordance with multi-variate analysis. 2. Test species, japanese larch (Larix leptolepis Gord) and the Korean white pine, (pinus koraiensis S et Z.) are plantable in extensive areas from mid to north in the temperate forest zone and are the two most recommended reforestation tree species in Korea. However, their respective site demands are little known and they have been in confusion or considered demanding the same site during reforestation. When the Korean white pine is planted in larch sites, it has shown relatively good growth, but, when Japanese larch is planted in Korean white pine site it can be hardly said that the Japanese Larch growth is good. To understand on such a difference soil factors have been studied so as to see how th soil's morphological, physical and chemical factors affect tree growth helped with the electronic computer. 3. All the stands examined are man-made mature forests. From 294 Japanese larch plots and 259 Korean white pine plots dominant trees are cut as samples and through stem analysis site index is determined. For each site index soil profiles are made in the related forest-land for analysis. Soil samples are taken from each profile horizon and forest-land productivity classification tables are worked out through physical and chemical analyses of the soil samples for each tree species for the study of relationships between physical, chemical and the combined physical/properties of soil and tree growth. 4. In the study of relationships between physical properties of soil and tree growth it is found out that Japanese larch growth is influenced by the following factors in the decreasing order of weight deposit form, soil depth, soil moisture, altitude, relief, soil type, depth a A-horizon, soil consistency, content of organic matter, soil texture, bed rock, gravel content, aspect and slope. For the Korean white pine the influencing factors' order is soil type, soil consistency, bed rock, aspect, depth of A-horizon, soil moisture, altitude, relief, deposit form, soil depth, soil texture, gravel content and slope. 5. In the study of relationships between chemical properties of soil and tree growth it is found out that Japanese larch growth is influenced by the following factors in the order of base saturation, organic matter, CaO, C/N ratio, effective $P_2O_5$, PH, exchangeable, $K_2O$, T-N, MgO, CEC, Total Base and Na. For the Korean white pine the influencing factors' order is effective $P_2O_5$, Total Base, T-N, Na, C/N ratio, PH, CaO, base saturation, organic matter, exchangeable $K_2O$, CEC and MgO. 6. In the study of relationships between the combined physical and chemical properties of soil and tree growth it is found out that Japanese larch growth is influenced by the following factors in the order of soil depth, deposit form, soil moisture, PH, relief, soil type altitude, T-N, soil consistency, effective $P_2O_5$, soil texture, depth of A-horizon, Total Base, exchangeable $K_2O$ and base saturation. For the Korean white pine the influencing factors' order is soil type, soil consistency, aspect, effective $P_2O_5$, depth of A-horizon, exchangeable $K_2O$, soil moisture, Total Base, altitude, soil depth, base saturation, relief, T-N, C/N ratio and deposit form. 7. In the multiple correlation of forest soil's physical properties larch's correlation coefficient for Japanese Larch is 0.9272 and for Korean white pine, 0.8996. With chemical properties larch has 0.7474 and Korean white pine has 0.7365. So, the soil's physical properties are found out more closely related with tree growth than chemical properties. However, this seems due to inadequate expression of soil's chemical factors and it is proved that the chemical properities are not less important than the physical properties. In the multiple correlation of the combined physical and chemical properties consisting of important morphological and physical factors as well as chemical factors of forest soils larch's multiple correlation coefficient is found out to be 0.9434 and for Korean white pine it is 0.9103 leading to the highest correlation. 8. As shown in the partial correlation coefficients Japanese larch needs deeper soil depth than Korean white pine and in the deposit form of colluvial and creeping soils are demanded by the larch. Moderately moist to not moist should be soil moisture and PH should be from 5.5 to 6.1 for the larch. Demands of T-N, soil texture and soil nutrients are higher for the larch than the Korean white pine. Thus, soil depth, deposit form, relief, soil moisture, PH, N, altitude and soil texture are good indicators for species sitings with larch and the Korean white pine while soil type and soil consistency are indicative only limitedly of species sitings due to their wide variations as plantation environments. For the larch siting soil depth, deposit form, relief, soil moisture, pH, soil type, N and soil texture are indicators of good growth and for the Korean white pine they are soil type, soil consistency, effective $P_2O_5$ and exchangeable $K_2O$. In soil nutrients larch has been found out demanding more than the Korean white pine except $K_2O$, which is demanded more by the Korean white pine than Japanese larch generally. 9. Physical properties of soil has been known as affecting tree growth to the greatest extent so far. However, as a result of this study it is proved through computer analysis that chemical properties of soil are not less important factors for tree growth than chemical properties and site demands for the Japanese larch and the Korean white pine that have been uncertain so far could be clarified.

  • PDF

Estimation Carbon Storage of Urban Street trees Using UAV Imagery and SfM Technique (UAV 영상과 SfM 기술을 이용한 가로수의 탄소저장량 추정)

  • Kim, Da-Seul;Lee, Dong-Kun;Heo, Han-Kyul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.6
    • /
    • pp.1-14
    • /
    • 2019
  • Carbon storage is one of the regulating ecosystem services provided by urban street trees. It is important that evaluating the economic value of ecosystem services accurately. The carbon storage of street trees was calculated by measuring the morphological parameter on the field. As the method is labor-intensive and time-consuming for the macro-scale research, remote sensing has been more widely used. The airborne Light Detection And Ranging (LiDAR) is used in obtaining the point clouds data of a densely planted area and extracting individual trees for the carbon storage estimation. However, the LiDAR has limitations such as high cost and complicated operations. In addition, trees change over time they need to be frequently. Therefore, Structure from Motion (SfM) photogrammetry with unmanned Aerial Vehicle (UAV) is a more suitable method for obtaining point clouds data. In this paper, a UAV loaded with a digital camera was employed to take oblique aerial images for generating point cloud of street trees. We extracted the diameter of breast height (DBH) from generated point cloud data to calculate the carbon storage. We compared DBH calculated from UAV data and measured data from the field in the selected area. The calculated DBH was used to estimate the carbon storage of street trees in the study area using a regression model. The results demonstrate the feasibility and effectiveness of applying UAV imagery and SfM technique to the carbon storage estimation of street trees. The technique can contribute to efficiently building inventories of the carbon storage of street trees in urban areas.

Impact of Diverse Document-evaluation Measure-based Searching Methods in Big Data Search Accuracy (빅데이터 검색 정확도에 미치는 다양한 측정 방법 기반 검색 기법의 효과)

  • Kim, Ji young;Han, DaHyeon;Kim, Jongkwon
    • Journal of KIISE
    • /
    • v.44 no.5
    • /
    • pp.553-558
    • /
    • 2017
  • With the rapid growth of Big Data, research on extracting meaningful information is being pursued by both academia and industry. Especially, data characteristics derived from analysis, and researcher intention are key factors for search algorithms to obtain accurate output. Therefore, reflecting both data characteristics and researcher intention properly is the final goal of data analysis research. The data analyzed properly can help users to increase loyalty to the service provided by company, and to utilize information more effectively and efficiently. In this paper, we explore various methods of document-evaluation, so that we can improve the accuracy of searching article one of the most frequently searches used in real life. We also analyze the experiment result, and suggest the proper manners to use various methods.