• Title/Summary/Keyword: tree classification

Search Result 938, Processing Time 0.029 seconds

Cloud Computing Adoption Decision-Making Modeling Using CART (CART 방법론을 사용한 클라우드 컴퓨팅 도입 의사 결정 모델링)

  • Baek, Seung Hyun;Chang, Byeong-Yun
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.4
    • /
    • pp.189-195
    • /
    • 2014
  • In this paper, we conducted a study on place-free and time-free cloud computing (CC) adoption decision-making model. Panel survey data which is collected from 65 people and CART (classification and regression tree) which is one of data mining approaches are used to construct decision-making model. In this modeling, there are 2 steps: In the first step, significant questions (variables) are selected. After that, the CART decision-making model is constructed using the selected variables. In the variable selection stage, the 25 questions are reduced to 5 ones. The benefits of question reduction are quick response from respondent and reducing model-construction time.

Opinion-Mining Methodology for Social Media Analytics

  • Kim, Yoosin;Jeong, Seung Ryul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.391-406
    • /
    • 2015
  • Social media have emerged as new communication channels between consumers and companies that generate a large volume of unstructured text data. This social media content, which contains consumers' opinions and interests, is recognized as valuable material from which businesses can mine useful information; consequently, many researchers have reported on opinion-mining frameworks, methods, techniques, and tools for business intelligence over various industries. These studies sometimes focused on how to use opinion mining in business fields or emphasized methods of analyzing content to achieve results that are more accurate. They also considered how to visualize the results to ensure easier understanding. However, we found that such approaches are often technically complex and insufficiently user-friendly to help with business decisions and planning. Therefore, in this study we attempt to formulate a more comprehensive and practical methodology to conduct social media opinion mining and apply our methodology to a case study of the oldest instant noodle product in Korea. We also present graphical tools and visualized outputs that include volume and sentiment graphs, time-series graphs, a topic word cloud, a heat map, and a valence tree map with a classification. Our resources are from public-domain social media content such as blogs, forum messages, and news articles that we analyze with natural language processing, statistics, and graphics packages in the freeware R project environment. We believe our methodology and visualization outputs can provide a practical and reliable guide for immediate use, not just in the food industry but other industries as well.

Regression Trees with. Unbiased Variable Selection (변수선택 편향이 없는 회귀나무를 만들기 위한 알고리즘)

  • 김진흠;김민호
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.3
    • /
    • pp.459-473
    • /
    • 2004
  • It has well known that an exhaustive search algorithm suggested by Breiman et. a1.(1984) has a trend to select the variable having relatively many possible splits as an splitting rule. We propose an algorithm to overcome this variable selection bias problem and then construct unbiased regression trees based on the algorithm. The proposed algorithm runs two steps of selecting a split variable and determining a split rule for binary split based on the split variable. Simulation studies were performed to compare the proposed algorithm with Breiman et a1.(1984)'s CART(Classification and Regression Tree) in terms of degree of variable selection bias, variable selection power, and MSE(Mean Squared Error). Also, we illustrate the proposed algorithm with real data sets.

A Muti-Resolution Approach to Restaurant Named Entity Recognition in Korean Web

  • Kang, Bo-Yeong;Kim, Dae-Won
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.277-284
    • /
    • 2012
  • Named entity recognition (NER) technique can play a crucial role in extracting information from the web. While NER systems with relatively high performances have been developed based on careful manipulation of terms with a statistical model, term mismatches often degrade the performance of such systems because the strings of all the candidate entities are not known a priori. Despite the importance of lexical-level term mismatches for NER systems, however, most NER approaches developed to date utilize only the term string itself and simple term-level features, and do not exploit the semantic features of terms which can handle the variations of terms effectively. As a solution to this problem, here we propose to match the semantic concepts of term units in restaurant named entities (NEs), where these units are automatically generated from multiple resolutions of a semantic tree. As a test experiment, we applied our restaurant NER scheme to 49,153 nouns in Korean restaurant web pages. Our scheme achieved an average accuracy of 87.89% when applied to test data, which was considerably better than the 78.70% accuracy obtained using the baseline system.

HIERARCHICAL CLUSTER ANALYSIS by arboART NEURAL NETWORKS and its APPLICATION to KANSEI EVALUATION DATA ANALYSIS

  • Ishihara, Shigekazu;Ishihara, Keiko;Nagamachi, Mitsuo
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.05a
    • /
    • pp.195-200
    • /
    • 2002
  • ART (Adaptive Resonance Theory [1]) neural network and its variations perform non-hierarchical clustering by unsupervised learning. We propose a scheme "arboART" for hierarchical clustering by using several ART1.5-SSS networks. It classifies multidimensional vectors as a cluster tree, and finds features of clusters. The Basic idea of arboART is to use the prototype formed in an ART network as an input to other ART network that has looser distance criteria (Ishihara, et al., [2,3]). By sending prototype vectors made by ART to one after another, many small categories are combined into larger and more generalized categories. We can draw a dendrogram using classification records of sample and categories. We have confirmed its ability using standard test data commonly used in pattern recognition community. The clustering result is better than traditional computing methods, on separation of outliers, smaller error (diameter) of clusters and causes no chaining. This methodology is applied to Kansei evaluation experiment data analysis.

  • PDF

Morphological and Molecular Classifications of Genus Pholis

  • Lee, Sung-Hoon;Jang, Yo-Soon;Baik, Chung-Boo;Han, Kyeong-Ho;Myung, Jung-Goo;Lee, Jin-Hee;Choi, Sang-Duk;Kim, Seon-Jae;Kim, Jong-Oh;Hwang, Jae-Ho
    • Animal cells and systems
    • /
    • v.13 no.4
    • /
    • pp.453-460
    • /
    • 2009
  • Morphological and molecular classifications were attempted in an effort to establish species-specific classifications of three species of the genus Pholis in Korea; these species were subjected to morphological and molecular methodologies using body measurements, RFLP, RAPD, and phylogenetic trees using the nucleotide sequences of mitochondrial 16S and 12S ribosomal DNAs, cytochrome c oxidase I, and cytochrome b. The data demonstrated that the three species of genus Pholis are distinct from each other, both morphologically and genetically.

A Study on Generation Method of Intonation using Peak Parameter and Pitch Lookup-Table (Peak 파라미터와 피치 검색테이블을 이용한 억양 생성방식 연구)

  • Jang, Seok-Bok;Kim, Hyung-Soon
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.184-190
    • /
    • 1999
  • 본 논문에서는 Text-to-Speech 시스템에서 사용할 억양 모델을 위해 음성 DB에서 모델 파라미터와 피치 검색테이블(lookup-table)을 추출하여 미리 구성하고, 합성시에는 이를 추정하여 최종 F0 값을 생성하는 자료기반 접근방식(data-driven approach)을 사용한다. 어절 경계강도(break-index)는 경계강도의 특성에 따라 고정적 경계강도와 가변적 경계강도로 세분화하여 사용하였고, 예측된 경계강도를 기준으로 억양구(Intonation Phrase)와 액센트구(Accentual Phrase)를 설정하였다. 특히, 액센트구 모델은 인지적, 음향적으로 중요한 정점(peak)을 정확하게 모델링하는 것에 주안점을 두어 정점(peak)의 시간축, 주파수축 값과 이를 기준으로 한 앞뒤 기울기를 추정하여 4개의 파라미터로 설정하였고, 이 파라미터들은 CART(Classification and Regression Tree)를 이용하여 예측규칙을 만들었다. 경계음조가 나타나는 조사, 어미는 정규화된(normalized) 피치값과 key-index로 구성되는 검색테이블을 만들어 보다 정교하게 피치값을 예측하였다. 본 논문에서 제안한 억양 모델을 본 연구실에서 제작한 음성합성기를 통해 합성하여 청취실험을 거친 결과, 기존의 상용 Text-to-Speech 시스템에 비해 자연스러운 합성음을 얻을 수 있었다.

  • PDF

SVM based Stock Price Forecasting Using Financial Statements (SVM 기반의 재무 정보를 이용한 주가 예측)

  • Heo, Junyoung;Yang, Jin Yong
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.3
    • /
    • pp.167-172
    • /
    • 2015
  • Machine learning is a technique for training computers to be used in classification or forecasting. Among the various types, support vector machine (SVM) is a fast and reliable machine learning mechanism. In this paper, we evaluate the stock price predictability of SVM based on financial statements, through a fundamental analysis predicting the stock price from the corporate intrinsic values. Corporate financial statements were used as the input for SVM. Based on the results, the rise or drop of the stock was predicted. The SVM results were compared with the forecasts of experts, as well as other machine learning methods such as ANN, decision tree and AdaBoost. SVM showed good predictive power while requiring less execution time than the other machine learning schemes.

Printed Hangul Recognition with Adaptive Hierarchical Structures Depending on 6-Types (6-유형 별로 적응적 계층 구조를 갖는 인쇄 한글 인식)

  • Ham, Dae-Sung;Lee, Duk-Ryong;Choi, Kyung-Ung;Oh, Il-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.1
    • /
    • pp.10-18
    • /
    • 2010
  • Due to a large number of classes in Hangul character recognition, it is usual to use the six-type preclassification stage. After the preclassification, the first consonent, vowel, and last consonent can be classified separately. Though each of three components has a few of classes, classification errors occurs often due to shape similarity such as 'ㅔ' and 'ㅖ'. So this paper proposes a hierarchical recognition method which adopts multi-stage tree structures for each of 6-types. In addition, to reduce the interference among three components, the method uses the recognition results of first consonents and vowel as features of vowel classifier. The recognition accuracy for the test set of PHD08 database was 98.96%.

Feature Analysis on Industrial Accidents of Manufacturing Businesses Using QUEST Algorithm

  • Leem, Young-Moon;Rogers, K.J.;Hwang, Young-Seob
    • International Journal of Safety
    • /
    • v.5 no.1
    • /
    • pp.37-41
    • /
    • 2006
  • The major objective of the statistical analysis about industrial accidents is to determine the safety factors so that it is possible to prevent or decrease the number of future accidents by educating those who work in a given industrial field in safety management. So far, however, there exists no quantitative method for evaluating danger related to industrial accidents. Therefore, as a method for developing quantitative evaluation technique, this study presents feature analysis of industrial accidents in manufacturing field using QUEST algorithm. In order to analyze features of industrial accidents, a retrospective analysis was performed on 10,536 subjects (10,313 injured people, 223 deaths). The sample for this work was chosen from data related to manufacturing businesses during a three-year period ($2002{\sim}2004$) in Korea. This study used AnswerTree of SPSS and the analysis results enabled us to determine the most important variables that can affect injured people such as the occurrence type, the company size, and the time of occurrence. Also, it was found that the classification system adopted in the present study using QUEST algorithm is quite reliable.