• Title/Summary/Keyword: tree classification

Search Result 938, Processing Time 0.028 seconds

An Assessment of a Random Forest Classifier for a Crop Classification Using Airborne Hyperspectral Imagery

  • Jeon, Woohyun;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.141-150
    • /
    • 2018
  • Crop type classification is essential for supporting agricultural decisions and resource monitoring. Remote sensing techniques, especially using hyperspectral imagery, have been effective in agricultural applications. Hyperspectral imagery acquires contiguous and narrow spectral bands in a wide range. However, large dimensionality results in unreliable estimates of classifiers and high computational burdens. Therefore, reducing the dimensionality of hyperspectral imagery is necessary. In this study, the Random Forest (RF) classifier was utilized for dimensionality reduction as well as classification purpose. RF is an ensemble-learning algorithm created based on the Classification and Regression Tree (CART), which has gained attention due to its high classification accuracy and fast processing speed. The RF performance for crop classification with airborne hyperspectral imagery was assessed. The study area was the cultivated area in Chogye-myeon, Habcheon-gun, Gyeongsangnam-do, South Korea, where the main crops are garlic, onion, and wheat. Parameter optimization was conducted to maximize the classification accuracy. Then, the dimensionality reduction was conducted based on RF variable importance. The result shows that using the selected bands presents an excellent classification accuracy without using whole datasets. Moreover, a majority of selected bands are concentrated on visible (VIS) region, especially region related to chlorophyll content. Therefore, it can be inferred that the phenological status after the mature stage influences red-edge spectral reflectance.

Comparisons of the Accuracy of Classification Methods in Sasang Constitution Diagnosis with Pulse Waves (맥파를 이용한 사상체질의 진단에 있어서 분류방법에 따른 진단의 정확도 비교)

  • Shin, Sang-Hoon;Kim, Jong-Yeol
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.10
    • /
    • pp.249-257
    • /
    • 2009
  • The purpose of this study is to find a classification method with high accuracy in regard with sasang constitutional diagnosis. The BMI, blood pressure, pulse wave, and Sasang constitution diagnosed by a specialist was collected from 2848 subjects who were apparently healthy. Through a selective procedure, the data of 1635 subjects was used in the analysis. The results with the classification methods such as the discriminant analysis, regression, decision tree and neural network were compared with the diagnosis of a Sasang constitutional specialist. In result, the discriminant analysis method was hard to qualify the assumption of the equality of covariance matrices within constitutional groups. Moreover, without BMI, the decision tree and neural network methods were very sensitive to the change of the analysis data. Therefore, the Logistic regression and the decision tree is recommended on condition that the decisive factors of constitution are well concerned.

Integrity Assessment Models for Bridge Structures Using Fuzzy Decision-Making (퍼지의사결정을 이용한 교량 구조물의 건전성평가 모델)

  • 안영기;김성칠
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.1022-1031
    • /
    • 2002
  • This paper presents efficient models for bridge structures using CART-ANFIS (classification and regression tree-adaptive neuro fuzzy inference system). A fuzzy decision tree partitions the input space of a data set into mutually exclusive regions, each region is assigned a label, a value, or an action to characterize its data points. Fuzzy decision trees used for classification problems are often called fuzzy classification trees, and each terminal node contains a label that indicates the predicted class of a given feature vector. In the same vein, decision trees used for regression problems are often called fuzzy regression trees, and the terminal node labels may be constants or equations that specify the predicted output value of a given input vector. Note that CART can select relevant inputs and do tree partitioning of the input space, while ANFIS refines the regression and makes it continuous and smooth everywhere. Thus it can be seen that CART and ANFIS are complementary and their combination constitutes a solid approach to fuzzy modeling.

P2P Traffic Classification using Advanced Heuristic Rules and Analysis of Decision Tree Algorithms (개선된 휴리스틱 규칙 및 의사 결정 트리 분석을 이용한 P2P 트래픽 분류 기법)

  • Ye, Wujian;Cho, Kyungsan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.3
    • /
    • pp.45-54
    • /
    • 2014
  • In this paper, an improved two-step P2P traffic classification scheme is proposed to overcome the limitations of the existing methods. The first step is a signature-based classifier at the packet-level. The second step consists of pattern heuristic rules and a statistics-based classifier at the flow-level. With pattern heuristic rules, the accuracy can be improved and the amount of traffic to be classified by statistics-based classifier can be reduced. Based on the analysis of different decision tree algorithms, the statistics-based classifier is implemented with REPTree. In addition, the ensemble algorithm is used to improve the performance of statistics-based classifier Through the verification with the real datasets, it is shown that our hybrid scheme provides higher accuracy and lower overhead compared to other existing schemes.

Robust Feature Selection and Shot Change Detection Method Using the Neural Networks (강인한 특징 변수 선별과 신경망을 이용한 장면 전환점 검출 기법)

  • Hong, Seung-Bum;Hong, Gyo-Young
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.7
    • /
    • pp.877-885
    • /
    • 2004
  • In this paper, we propose an enhancement shot change detection method using the neural net and the robust feature selection out of multiple features. The previous shot change detection methods usually used single feature and fixed threshold between consecutive frames. However, contents such as color, shape, background, and texture change simultaneously at shot change points in a video sequence. Therefore, in this paper, we detect the shot changes effectively using robust features, which are supplementary each other, rather than using single feature. In this paper, we use the typical CART (classification and regression tree) of data mining method to select the robust features, and the backpropagation neural net to determine the threshold of the each selected features. And to evaluation the performance of the robust feature selection, we compare the proposed method to the PCA(principal component analysis) method of the typical feature selection. According to the experimental result. it was revealed that the performance of our method had better that than the PCA method.

  • PDF

Missing Value Imputation Method Using CART : For Marital Status in the Population and Housing Census (CART를 활용한 결측값 대체방법 : 인구주택총조사 혼인상태 항목을 중심으로)

  • 김영원;이주원
    • Survey Research
    • /
    • v.4 no.2
    • /
    • pp.1-21
    • /
    • 2003
  • We proposed imputation strategies for marital status in the Population and Housing Census 2000 in Korea to illustrate the effective missing value imputation methods for social survey. The marital status which have relatively high non-response rates in the Census are considered to develope the effective missing value imputation procedures. The Classification and Regression Tree(CART)is employed to construct the imputation cells for hot-deck imputation, as well as to predict the missing value by model-based approach. We compare to imputation methods which include the CART model-based imputation and the sequential hot-deck imputation based on CART. Also we check whether different modeling for each region provides the more improved results. The results suggest that the proposed hot-deck imputation based on CART is very efficient and strongly recommendable. And the results show that different modeling for each region is not necessary.

  • PDF

Impervious Surface Estimation of Jungnangcheon Basin Using Satellite Remote Sensing and Classification and Regression Tree (위성원격탐사와 분류 및 회귀트리를 이용한 중랑천 유역의 불투수층 추정)

  • Kim, Sooyoung;Heo, Jun-Haeng;Heo, Joon;Kim, SungHoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.915-922
    • /
    • 2008
  • Impervious surface is an important index for the estimation of urbanization and the assessment of environmental change. In addition, impervious surface influences on short-term rainfall-runoff model during rainy season in hydrology. Recently, the necessity of impervious surface estimation is increased because the effect of impervious surface is increased by rapid urbanization. In this study, impervious surface estimation is performed by using remote sensing image such as Landsat-7 ETM+image with $30m{\times}30m$ spatial resolution and satellite image with $1m{\times}1m$ spatial resolution based on Jungnangcheon basin. A tasseled cap transformation and NDVI(normalized difference vegetation index) transformation are applied to Landsat-7 ETM+ image to collect various predict variables. Moreover, the training data sets are collected by overlaying between Landsat-7 ETM+ image and satellite image, and CART(classification and regression tree) is applied to the training data sets. As a result, impervious surface prediction model is consisted and the impervious surface map is generated for Jungnangcheon basin.

Revision and Evaluation of Korean Outpatient Groups-Korean Medicine (한의 외래환자분류체계 개선 및 평가)

  • Ryu, Jiseon;Lim, Byungmook;Lee, Byungwook;Kim, Changhoon;Han, Chang-Ho
    • The Journal of Korean Medicine
    • /
    • v.35 no.3
    • /
    • pp.93-102
    • /
    • 2014
  • Objectives: This study aimed at revising the Korean Out-patient Groups for Korean Medicine (KOPG-OM, version 1.0) based on clinical similarity and resource use, by using the accumulated claims data, and evaluating the validity of the revised classification system. Methods: A clinical specialist panel involving 19 specialists from 8 Korean medicine (KM) specialty areas reviewed the classification tree, diagnosis groups and procedure groups in terms of clinical similarity. Several models of outpatient grouping were formulated, with the validity of each tested based on the $R^2$ coefficient of determination for the treatment costs of all visits. To add age splits, the variances of treatment costs by age groups were also analyzed. These statistical analyses were performed using KM claims data of National Health Insurance from 2010 to 2012. Results: The classification tree designed via panel discussions was used to allocate outpatient cases to 26 diagnosis groups, with cases involving procedures such as acupuncture, moxibustion and cupping, then allocated to 9 procedure groups in each diagnosis group. The cases without procedures were categorized into the visit index - medication group. This process resulted in 298 outpatient groups. The $R^2$ values for treatment costs of all visits ranged from 0.38 to 0.69 depending on the providers' types. Conclusions: The revised model of KOPG-KM has a higher validity for outpatient classification than the current system and can provide better management of the costs of outpatient care in KM.

An Analysis of Nursing Needs for Hospitalized Cancer Patients;Using Data Mining Techniques (데이터 마이닝을 이용한 입원 암 환자 간호 중증도 예측모델 구축)

  • Park, Sun-A
    • Asian Oncology Nursing
    • /
    • v.5 no.1
    • /
    • pp.3-10
    • /
    • 2005
  • Back ground: Nurses now occupy one third of all hospital human resources. Therefore, efficient management of nursing manpower is getting more important. While it is very clear that nursing workload requirement analysis and patient severity classification should be done first for the efficient allocation of nursing workforce, these processes have been conducted manually with ad hoc rule. Purposes: This study was tried to make a predict model for patient classification according to nursing need. We tried to find the easier and faster method to classify nursing patients that can help efficient management of nursing manpower. Methods: The nursing patient classifications data of the hospitalized cancer patients in one of the biggest cancer center in Korea during 2003.1.1-2003.12.31 were assessed by trained nurses. This study developed a prediction model and analyzing nursing needs by data mining techniques. Patients were classified by three different data mining techniques, (Logistic regression, Decision tree and Neural network) and the results were assessed. Results: The data set was created using 165,073 records of 2,228 patients classification database. Main explaining variables were as follows in 3 different data mining techniques. 1) Logistic regression : age, month and section. 2) Decision tree : section, month, age and tumor. 3) Neural network : section, diagnosis, age, sex, metastasis, hospital days and month. Among these three techniques, neural network showed the best prediction power in ROC curve verification. As the result of the patient classification prediction model developed by neural network based on nurse needs, the prediction accuracy was 84.06%. Conclusion: The patient classification prediction model was developed and tested in this study using real patients data. The result can be employed for more accurate calculation of required nursing staff and effective use of labor force.

  • PDF

Automatic Recognition of Digital Modulation Types using Wavelet Transformation (웨이브릿 변환을 이용한 디지털 변조타입 자동 인식)

  • Park, Cheol-Sun;Nah, Sun-Phil;Yang, Jong-Won;Choi, Jun-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.4
    • /
    • pp.22-30
    • /
    • 2008
  • In this paper, we deal with modulation classification method using WT capable of classifying incident digital signals without a priori information. These key features should have good properties of sensitive with modulation types and insensitive with SNR variation. The 4 key features for modulation recognition are selected using WT coefficients, which have the property of insentive to the changing of noise. The numerical simulations for classifying 8 digital modulation types using these features are peformed. The numerical simulations of the 3 types (i.e. DTC, MDC, and SVMC) of modulation classifiers are performed the investigation of classification accuracy and execution time to design the modulation classification module in software radio. The simulation result indicated that the execution time of MDC and DTC was best and MDC and SVMC showed good classification performance.