• Title/Summary/Keyword: tree classification

Search Result 938, Processing Time 0.03 seconds

Predicting Tree Felling Direction Using Path Distance Back Link in Geographic Information Systems (GIS)

  • Rhyma Purnamasayangsukasih Parman;Mohd Hasmadi, Ismail;Norizah Kamarudin;Nur Faziera Yaakub
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.4
    • /
    • pp.203-212
    • /
    • 2023
  • Directional felling is a felling method practised by the Forestry Department in Peninsular Malaysia as prescribed in Field Work Manual (1997) for Selective Management Systems (SMS) in forest harvesting. Determining the direction of tree felling in Peninsular Malaysia is conducted during the pre-felling inventory 1 to 2 years before the felling operation. This study aimed to predict and analyze the direction of tree felling using the vector-based path distance back link method in Geographic Information Systems (GIS) and compare it with the felling direction observed on the ground. The study area is at Balah Forest Reserve, Kelantan, Peninsular Malaysia. A Path Distance Back Link (spatial analyst) function in ArcGIS Pro 3.0 was used in predicting tree felling direction. Meanwhile, a binary classification was used to compare the felling direction estimated using GIS and the tree felling direction observed on the ground. Results revealed that 61.3% of 31 trees predicted using the vector-based projection method were similar to the felling direction observed on the ground. It is important to note that dynamic changes of natural constraints might occur in the middle of tree felling operation, such as weather problems, wind speed, and unpredicted tree falling direction.

A Study on Improving Classification Performance for Manufacturing Process Data with Multicollinearity and Imbalanced Distribution (다중공선성과 불균형분포를 가지는 공정데이터의 분류 성능 향상에 관한 연구)

  • Lee, Chae Jin;Park, Cheong-Sool;Kim, Jun Seok;Baek, Jun-Geol
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.1
    • /
    • pp.25-33
    • /
    • 2015
  • From the viewpoint of applications to manufacturing, data mining is a useful method to find the meaningful knowledge or information about states of processes. But the data from manufacturing processes usually have two characteristics which are multicollinearity and imbalance distribution of data. Two characteristics are main causes which make bias to classification rules and select wrong variables as important variables. In the paper, we propose a new data mining procedure to solve the problem. First, to determine candidate variables, we propose the multiple hypothesis test. Second, to make unbiased classification rules, we propose the decision tree learning method with different weights for each category of quality variable. The experimental result with a real PDP (Plasma display panel) manufacturing data shows that the proposed procedure can make better information than other data mining procedures.

Exploring Machine Learning Classifiers for Breast Cancer Classification

  • Inayatul Haq;Tehseen Mazhar;Hinna Hafeez;Najib Ullah;Fatma Mallek;Habib Hamam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.860-880
    • /
    • 2024
  • Breast cancer is a major health concern affecting women and men globally. Early detection and accurate classification of breast cancer are vital for effective treatment and survival of patients. This study addresses the challenge of accurately classifying breast tumors using machine learning classifiers such as MLP, AdaBoostM1, logit Boost, Bayes Net, and the J48 decision tree. The research uses a dataset available publicly on GitHub to assess the classifiers' performance and differentiate between the occurrence and non-occurrence of breast cancer. The study compares the 10-fold and 5-fold cross-validation effectiveness, showing that 10-fold cross-validation provides superior results. Also, it examines the impact of varying split percentages, with a 66% split yielding the best performance. This shows the importance of selecting appropriate validation techniques for machine learning-based breast tumor classification. The results also indicate that the J48 decision tree method is the most accurate classifier, providing valuable insights for developing predictive models for cancer diagnosis and advancing computational medical research.

Design and Performance Measurement of a Genetic Algorithm-based Group Classification Method : The Case of Bond Rating (유전 알고리듬 기반 집단분류기법의 개발과 성과평가 : 채권등급 평가를 중심으로)

  • Min, Jae-H.;Jeong, Chul-Woo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.1
    • /
    • pp.61-75
    • /
    • 2007
  • The purpose of this paper is to develop a new group classification method based on genetic algorithm and to com-pare its prediction performance with those of existing methods in the area of bond rating. To serve this purpose, we conduct various experiments with pilot and general models. Specifically, we first conduct experiments employing two pilot models : the one searching for the cluster center of each group and the other one searching for both the cluster center and the attribute weights in order to maximize classification accuracy. The results from the pilot experiments show that the performance of the latter in terms of classification accuracy ratio is higher than that of the former which provides the rationale of searching for both the cluster center of each group and the attribute weights to improve classification accuracy. With this lesson in mind, we design two generalized models employing genetic algorithm : the one is to maximize the classification accuracy and the other one is to minimize the total misclassification cost. We compare the performance of these two models with those of existing statistical and artificial intelligent models such as MDA, ANN, and Decision Tree, and conclude that the genetic algorithm-based group classification method that we propose in this paper significantly outperforms the other methods in respect of classification accuracy ratio as well as misclassification cost.

Stream-based Biomedical Classification Algorithms for Analyzing Biosignals

  • Fong, Simon;Hang, Yang;Mohammed, Sabah;Fiaidhi, Jinan
    • Journal of Information Processing Systems
    • /
    • v.7 no.4
    • /
    • pp.717-732
    • /
    • 2011
  • Classification in biomedical applications is an important task that predicts or classifies an outcome based on a given set of input variables such as diagnostic tests or the symptoms of a patient. Traditionally the classification algorithms would have to digest a stationary set of historical data in order to train up a decision-tree model and the learned model could then be used for testing new samples. However, a new breed of classification called stream-based classification can handle continuous data streams, which are ever evolving, unbound, and unstructured, for instance--biosignal live feeds. These emerging algorithms can potentially be used for real-time classification over biosignal data streams like EEG and ECG, etc. This paper presents a pioneer effort that studies the feasibility of classification algorithms for analyzing biosignals in the forms of infinite data streams. First, a performance comparison is made between traditional and stream-based classification. The results show that accuracy declines intermittently for traditional classification due to the requirement of model re-learning as new data arrives. Second, we show by a simulation that biosignal data streams can be processed with a satisfactory level of performance in terms of accuracy, memory requirement, and speed, by using a collection of stream-mining algorithms called Optimized Very Fast Decision Trees. The algorithms can effectively serve as a corner-stone technology for real-time classification in future biomedical applications.

PREPARATION OF CARBON DIOXIDE ABSORPTION MAP USING KOMPSAT-2 IMAGERY

  • Kim, So-Ra;Lee, Woo-Kyun
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.200-203
    • /
    • 2008
  • The objective of this study is to produce the $CO_2$ (carbon dioxide) absorption map using KOMPSAT-2 imagery. For estimating the amount of $CO_2$ absorption, the stand biomass of forest was estimated with the total weight, which was the sum of individual tree weight. Individual tree volumes could be estimated by the crown width extracted from KOMPSAT-2 imagery. In particular, the carbon conversion index and the ratio of the $CO_2$ molecular weight to the C atomic weight, reported in the IPCC (Intergovernmental Panel on Climate Change) guideline, was used to convert the stand biomass into the amount of $CO_2$ absorption. Thereafter, the KOMPSAT-2 imagery was classified with the SBC (segment based classification) method in order to quantify $CO_2$ absorption by tree species. As a result, the map of $CO_2$ absorption was produced and the amount of $CO_2$ absorption was estimated by tree species.

  • PDF

Kernel-based sentence classification for protein-protein interaction (커널 기반의 '단백질-단백질 작용' 의미 포함 문장 분류)

  • Kim Seong-Hwan;Eom Jae-Hong;Zhang Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.286-288
    • /
    • 2005
  • 본 논문에서는 tree kernel을 이용 '단백질-단백질 작용' 내용 포함 문장의 추출 방법을 제시한다. Tree kernel은 convolution kernel의 하나로서, 이를 이용하여 파싱 트리(parsing tree)로 표현된 문장을 데이터로 하여 '단백질-단백질 작용' 내용을 포함하고 있는 문장을 그렇지 않은 문장으로부터 분류할 수 있다. 문장 전체를 데이터로 사용하는 것보다 관련 영역을 서브트리(sub-tree)로 추출하여 사용한 것이 더 효과적임을 확인할 수 있었고, kernel계산에 있어 파싱 트리의 태그 내용이 중요한 역할을 하기 때문에 이를 '단백질-단백질 작용'의 의미를 반영할 수 있도록 semantic하게 변환한 효과 및 트리의 길이에 따른 영향도 실험해 보았다. 문제에 사용된 데이터의 양이 다소 적었지만, 데이터 표현 방식에 따라 파싱이나 패턴기법을 이용한 기존의 방법과 비교해 좋은 성능을 보일 수 있다는 가능성을 확인할 수 있었다.

  • PDF