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Abstract 

 
Breast cancer is a major health concern affecting women and men globally. Early detection 
and accurate classification of breast cancer are vital for effective treatment and survival of 
patients. This study addresses the challenge of accurately classifying breast tumors using 
machine learning classifiers such as MLP, AdaBoostM1, logit Boost, Bayes Net, and the J48 
decision tree. The research uses a dataset available publicly on GitHub to assess the classifiers' 
performance and differentiate between the occurrence and non-occurrence of breast cancer. 
The study compares the 10-fold and 5-fold cross-validation effectiveness, showing that 10-
fold cross-validation provides superior results. Also, it examines the impact of varying split 
percentages, with a 66% split yielding the best performance. This shows the importance of 
selecting appropriate validation techniques for machine learning-based breast tumor 
classification. The results also indicate that the J48 decision tree method is the most accurate 
classifier, providing valuable insights for developing predictive models for cancer diagnosis 
and advancing computational medical research. 
 
 
Keywords: Artificial intelligence, Data processing, Computations, Bioinformatics, 
Machine Learning, Breast cancer, Image Processing. 
 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO.4, April 2024                                     861 

 1. Introduction 

Despite years of research, more women are being diagnosed with breast cancer. Validated 
risk assessment models can use mammographic density and polygenic risk to predict a 
woman's risk of breast cancer more accurately [1]. Breast cancer remains the dominant type 
affecting women, encompassing various pathological presentations, clinical characteristics, 
and outcomes. In the United States, it ranks as the second highest cause of cancer-related 
deaths [2]. Fig. 1 depicts the breast cancer illustration.  

Multiple observational studies have shown that regular mammography screening 
significantly decreases mortality rates associated with breast cancer [3]. Early diagnosis of 
breast cancer tumors can increase the chances of survival. In the domain of Machine Learning 
(ML) and Deep Learning (DL), Convolutional neural networks (CNNs) have emerged as 
effective tools for classifying breast cancer tumors in medical images. Ensemble learning 
methods such as Random Forest (RF) and gradient boosting can help feature engineering to 
improve accuracy. Radiomics is a method that extracts detailed features from medical images 
to help classify breast tumors more effectively. Classifying breast cancer involves examining 
genes, tissues, and images from scans like MRI and ultrasound. Combining data from various 
sources and using explainable AI and transfer learning can improve classification models. 
Accuracy can also be increased using some strategies, i.e., synthetic data generation, 
quantitative image marker identification, and data augmentation [4-7]. 

Some challenges observed in breast cancer classification techniques are unbalanced data, 
interoperability problems, scarcity of knowledge in the health domain, and confusion in 
annotations. Similarly, challenges may occur with robust generalization, cost considerations, 
computational requirements, the dynamic nature of breast cancer, and adaptation to different 
patient populations [5, 8, 9]. A multifaceted approach is required to resolve these issues 
occurring in breast cancer classification. Data augmentation and collaborative databases can 
boost the size and diversity of datasets [10]. Attaining interoperability in healthcare relies on 
standardization and the advancement of interoperable systems [11]. Data security and privacy 
can be maintained if encryption and access control are combined with privacy-preserving AI 
methods [12]. Options include crowdsourcing and semi-supervised learning to enhance 
annotation quality and quantity. Model interpretability is facilitated through Explainable AI 
(XAI) and external interpretation tools. Generalization is improved with regularization 
techniques and cross-validation. Clinical validation necessitates rigorous trials and 
collaboration with regulatory bodies. Computational resource challenges are met with cloud 
computing and model optimization. Given the dynamic nature of breast cancer, models must 
incorporate continuous learning [13, 14]. Linear Discriminant Analysis (LDA) is a method in 
ML that helps to separate and classify different groups by finding the most important features. 
It's often used in pattern recognition and ML to help classify objects or predict categories  [15]. 

 Comparing multiple ML classifiers is essential for optimizing their performance in cancer 
diagnosis. This analysis helps pinpoint the most effective model by assessing metrics such as 
accuracy and precision. It also provides valuable insights into the reliability of classifiers 
across various datasets, guiding the selection of robust models. Fine-tuning hyperparameters 
based on their impact ensures optimal model performance and considers adaptability to diverse 
datasets [16, 17].  

The problem focused in this study is the accurate identification and classification of breast 
tumors using ML classifiers. This study aims to explore an efficient classifier among various 
classifiers for accurately classifying breast tumors. Also, the optimal splitting percentage and 
folding values should be determined to increase the accuracy of the classification model. Table 
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1 comprises the enumeration of acronyms. 
 

 
Fig. 1. Breast Cancer illustration: (a) breast cancer cells relation with the vascular system. (b) Major 

components present in blood [18]. 
 

Table 1. Enumeration of acronyms. 
Abbreviation  Full Form Abbreviation  Full Form 

SVM Support Vector Machine  PCA Principal Component 
Analysis 

DT Decision Tree RF Random Forest 
MLP Multi-Layer Perceptron K-NN K-Nearest Neighbors 

ANN Artificial Neural Networks DFA Discriminant Function 
Analysis 

LR Logistic Regression NDA Normal Discriminant 
Analysis 

ML Machine Learning DTC Decision Tree Classifier 

MCC Matthews Correlation 
Coefficient IGA Improved Genetic 

Algorithm 

LDA Linear Discriminant 
Analysis NCA Neighbourhood 

Components Analysis 
MAE Random Absolute Error ROI  Region of Interest 

RAE Relative Absolute Error ARFF Attribute-Relation File 
Format 

RMSE Root Mean Squared Error  AUC-ROC 
Area Under the Receiver 
Operating Characteristic 

Curve 

Weka Waikato Environment for 
Knowledge Analysis  ITK Insight Segmentation and 

Registration Toolkit 

RRSE Root Relative Squared 
Error PSO Particle Swarm 

Optimization 
GS Genetic Search BCW Breast Cancer Wisconsin 

RAE Relative Absolute Error AUC The area under the ROC 
Curve 

SL Supervised Learning   
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2. Literature Review 
Among K-NN, ANNs, LR, and RF, SVM was found to be the most accurate ML classifier 

for predicting breast cancer. On the other hand, ANNs outperformed other approaches with 
the highest accuracy of 98.57% [19]. A hybrid approach was created for feature selection that 
combines the advantages of feature selection methods with an enhanced GA (improved 
Genetic Algorithm). The findings showed that when choosing the best features, the hybrid 
feature selection approach is better for both single filter methods and PCA [20]. 
Similarly, genetic programming and ML techniques were used to create a system 
differentiating between benign and malignant breast malignancies. The objective of the 
research was to improve the learning algorithm. This study highlights the potential of genetic 
programming to automatically select the optimal model by combining feature pre-processing 
strategies and classifier algorithms [21]. 

A new integration method combining ML with specific selection and survival analysis 
based on Cox regression was presented in a study. The study aimed to identify the most useful 
miRNA biomarkers in different types of breast cancer [22]. The wrapper-based feature 
selection strategy uses PSO, GS, and a greedy step algorithm. The J48 (DT) estimator is the 
most accurate predictor of breast cancer using ML [23]. Diagnostics of an IoT environment 
based on machine learning aims to distinguish between normal and malignant tumors. To 
develop the classification of this method, an iterative feature selection strategy was used to 
identify the most important features in breast cancer data [24]. 

Four ML classifiers (kNN, DT, binary SVM, and Adaboost) were compared and contrasted 
regarding performance on the BCW dataset. The feature selection model used NCA to select 
and reduce the number of relevant features to reduce model complexity [25]. Using 
symmetrical CT scan data, several ML classifiers differentiate between images of healthy and 
tuberculosis-infected lungs. The MLP classifier outperforms other classifiers with 98.83% 
accuracy and fast execution time [26].  

Naive Bayes and KNN were used to classify breast cancer. The findings indicated that the 
KNN method performed better and achieved high accuracy, 97.51%, and a lower error rate. 
On the other hand, the Naive Bayes method also showed good results, with an accuracy of 
96.19%. Similarly, CNN was used to detect nodules from large numbers of images and has 
been evaluated to help radiologists diagnose cancer early [27].  

Likewise, public data was used to build a DL model for breast cancer diagnosis and 
classification. The high accuracy highlights the DL model's effectiveness in accurately 
detecting and classifying breast cancer [28]. A unique hybrid method that integrates traditional 
handcrafted features with CNNs to improve the effectiveness of segmenting brain tumors [29]. 
Decision tree (DT) methodologies offer several advantages in medical image analysis. Firstly, 
their interpretability is a key strength, allowing clinicians and researchers to understand the 
reasoning behind each decision [30]. DT handles non-linear relationships effectively [31]. DT 
methods are robust to outliers, which is common in medical datasets [32]. Moreover, DT 
methods perform implicit feature selection, prioritizing the most informative features [33].  

3. Methodology and Techniques 
This section presents the data collection, data preparation, and proposed methodology.  

3.1 Dataset Collection and Preparation 
This study uses a publicly available dataset from GitHub [34, 35]. ARFF format files are 



864                                                                                                             Haq et al.: Exploring Machine Learning  
Classifiers for Breast Cancer Classification 

used in this study because they are compatible with the Weka software. This dataset was 
sourced from the Institute of Oncology at the University Medical Centre, provided by 
physicians Matjaz Zwitter and Milan Soklic. The dataset was donated by Jeff Schlimmer and 
Ming Tan [35]. The dataset typically contains several hundred instances, each representing a 
case with a set of features and a class label indicating the presence or absence of breast cancer. 
This data includes demographic information, tumor characteristics, and medical history details. 
The pre-processing of the dataset involves handling missing values and encoding categorical 
variables. The dataset consists of 286 instances, each characterized by 10 attributes. It is noted 
that there are missing values present within the dataset. As per the class distribution, 201 
instances are labeled as 'no-recurrence-events,' while 85 instances are labeled as 'recurrence-
events.' The data is divided into 80% for training and 20% for testing of the model. 

3.2 Proposed Classification Model 
This proposed model presents a detailed examination to classify breast tumor recurrence. 

This begins with dataset evaluation and resolving data quality issues via pre-processing. We 
utilized feature selection methods to pinpoint relevant attributes effectively. Weka classifiers, 
like MLP, Bayesian Networks, J48, AdaBoostM1, and LogitBoost, were employed. To ensure 
model robustness, we used both 10-fold and 5-fold cross-validation, along with testing 
different percentage splits. The model evaluation used metrics like precision, recall, F-measure, 
and ROC curve analysis, followed by parameter optimization in Weka to enhance performance. 
The refined model was then deployed for prediction on seen datasets. Fig. 2 depicts the 
proposed model. The version 3.8.3 of WEKA software [36-38] is employed to generate results.  

 

 
Fig. 2. Proposed model block diagram. 
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3.3 Performance Evaluation of the Model 
The performance evaluation of the proposed classifiers was measured using the following 

metrics. These parameters were also used in the previous study [26]. 
 

TP − rate =  
TP

(TP + FN)
 ,                           

(1)    

 
TN − rate =

TN
(TN + FP)

 ,                           
(2) 

 
FP − rate =

FP
(FP + TN)

 ,                           
(3) 

 FN − rate = 1 − TP rate,                           
(4) 

 
Accuracy =  �

correctly predicted class 
total testing class instance

� × 100% ,                           
(5) 

 
Precission =

TP
(TP + FP)

 ,                           
(6) 

 
Recall =

TP
(TP + FN)

 ,                           
(7) 

 
F − measure =  

2 × Precission × Recall
Precision + Recall

 . 
                          

(8) 

 
In these equations, TP means true positive, TN means true negative, FP means false positive, 

and FN is false negative. The ROC Area, also known as the AUC, is a performance metric that 
assesses the accuracy of a binary classification algorithm. Two classes, "No recurrence" and 
"recurrence events," have been classified. In the context of this study, no recurrence means 
normal breast tumors. In contrast, recurrence events mean malignant breast tumors. Fig. 3 
depicts the confusion matrix for this analysis. In classifying breast cancer cases into two 
classes of non-recurrence and recurrence events, "True A" denotes the number of non-
recurrence marked right cases, and "True B" gives the cases where recurrence events have 
been mistakenly marked as non-recurrence. False-A counts the class of non-recurrence 
instances that the machine mistakenly classified. Meanwhile, False-B counts the instances the 
machine classified to the class of non-recurrence, but that belonged to the class of recurrence. 
 

 
Fig. 3. Proposed confusion matrix. 
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4. Results and Discussion  
The following are the results of classifiers used for breast tumor classification. 

4.1 Performance of MLP Classifier 
Table 2 summarizes the MLP classifier, displaying a runtime of 0.89 seconds and utilizing 

10 cross-validation folds. The count of instances is 286, where correctly classified instances 
are 185 and incorrectly classified instances are 101. 
 

Table 2. Summary of MLP classifier. 
Metrics Values 

The correctly classified instances 185 64.69% 
The incorrectly classified instances 101 35.31% 

Kappa Statistic 0.1575   
MAE 0.3552   

RMSE 0.5423   
RAE 84.88%   

RRSE 118.65%   
The total number of instances 286   

 
Table 3 presents the results of a classification model's performance in distinguishing 

between "no-recurrence-events" and "recurrence-events." It comprehensively assesses the 
model's accuracy, precision, recall, and other key metrics. The model demonstrates reasonably 
good performance, with an overall weighted average accuracy of 0.647, indicating its ability 
to classify instances into these two classes correctly. Additionally, the MCC suggests moderate 
overall model quality. Collectively, these metrics show that the model has the potential for 
identifying instances related to breast cancer recurrence, providing valuable insights for 
medical decision-making and treatment strategies. 

 
Table 3. Detailed accuracy of MLP classifier. 

Metrics no-recurrence-events recurrence-
events 

Weighted 
Average 

TP-rate 0.746 0.412 0.647 
FP-rate 0.588 0.254 0.489 

Precision 0.75 0.407 0.648 
Recall 0.746 0.412 0.647 

F-measure 0.748 0.409 0.647 
MCC 0.158 0.158 0.158 

ROC-Area 0.623 0.623 0.623 
PRC-Area 0.79 0.41 0.677 

 

Fig. 4 depicts the confusion matrix and events classification of the MLP classifier. It 
indicates that out of 150 instances of "no-recurrence-events," the model correctly classified 
150 (TP), but it misclassified 51 as "recurrence-events" (FP). Similarly, out of 50 instances of 
"recurrence-events," the model correctly classified 35 (TP) but misclassified 50 as "no-
recurrence-events" (FN).  
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Fig. 4. Events Classification by MLP Classifier. 

4.2 Performance of J48 (Decision Tree) Classifier 
The DT classifier required 0.06 seconds for execution, and the cross-validation involved 

10 folds. A summary of the J48 classifier can be found in Table 4. The total number of 
instances is 286, where correctly classified are 216 and incorrectly classified are 70. 

 
Table 4. The summary of 48 (DT) classifier. 

Metrics Values 

The correctly classified instances 216 75.5245% 
The incorrectly classified instances 70 24.48% 

The Kappa statistic 0.2826   
MAE 0.3676   

RMSE 0.4324   
RAE 87.8635%   

RRSE 94.61%   
The total number of instances 286   

 
Table 5 presents the performance metrics for the J48 classifier and demonstrates the 

model's high accuracy in identifying "no-recurrence-events" but struggles with "recurrence-
events." Finally, the model's quality is moderate, as indicated by the MCC of 0.339. 

 
Table 5. J48 classifier detailed accuracy. 

Metrics no-recurrence-events recurrence-events Weighted Average 

TP-rate 0.96 0.271 0.755 
FP-rate 0.729 0.04 0.524 

Precision 0.757 0.742 0.752 
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Recall 0.96 0.271 0.755 
F-measure 0.846 0.397 0.713 

MCC 0.339 0.339 0.339 
ROC-Area 0.584 0.584 0.584 
PRC-Area 0.736 0.436 0.647 

 

Fig. 5 depicts the confusion matrix and events classification of the J48 classifier. The model 
accurately predicted 193 instances of "no-recurrence-events" and 23 instances of "recurrence-
events." However, it made 8 FP predictions for "no-recurrence-events" and 62 FN predictions 
for "recurrence-events."  

 

 
Fig. 5. Events classification by J48 classifier. 

4.3 Performance of LogitBoost Classifier 
The model was constructed with a 10-fold cross-validation with a building time of 0.03 

seconds. Testing the model on the test split took 0 seconds. Table 6 presents a comprehensive 
summary of the LogitBoot classifier, including various instances and errors. 
 

Table 6. A Summary of LogitBoot Classifier. 
Metrics Values 

The correctly classified instances 207 72.38% 
The incorrectly classified instances 79 27.62% 

The Kappa statistic 0.2666  
MAE 0.3604  

RMSE 0.4409  
RAE 86.13%  

RRSE 96.46%  
The total number of instances 286  

 
Table 7 presents performance metrics for a LogitBoost classifier and shows strong 

performance in identifying "no-recurrence-events" with a good TP-rate and Precision. 
However, for "recurrence-events," the model's performance is comparatively weaker. Finally, 
all, the MCC suggests a moderate model quality.  
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Table 7. LogitBoost classifier detailed accuracy. 

Metrics no-recurrence-
events recurrence-events Weighted Average     

TP-rate 0.876 0.365 0.724 
FP-rate 0.635 0.124 0.483 

Precision 0.765 0.554 0.702 
Recall 0.876 0.365 0.724 

F-measure 0.817 0.44 0.705 
MCC 0.277 0.277 0.277 

ROC-Area 0.676 0.676 0.676 
PRC-Area 0.816 0.475 0.715 

 
Fig. 6 depicts the confusion matrix and events classification of a LogitBoost classifier. It 

shows that the model correctly predicted 176 instances of "no-recurrence-events" and 31 
instances of "recurrence-events." However, it made 25 FP predictions for "no-recurrence-
events" and 54 FN predictions for "recurrence-events."  

 

 
 

Fig. 6. Events classification by LogitBoost classifier. 
 

4.4 Performance of AdaBoostM1 Classifier 
The AdaBoostM1 classifier was executed in 0.02 seconds with 10 cross-validation folds. 

The testing of the model on the test split took 0 seconds. Table 8 offers a comprehensive 
overview of the AdaBoostM1 classifier, encompassing various instances and associated errors. 
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Table 8. Summary of AdaBoostM1 classifier. 
Metrics Values 

The correctly classified instances 201 70.28% 
The incorrectly classified instances 85 29.72% 

The Kappa statistic 0.2557   
MAE 0.3526   

RMSE 0.4329   
RAE 84.27%   

RRSE 94.71%   
The total number of instances 286   

 

Table 9 presents performance metrics for the AdaBoostM1 classifier, and the model 
demonstrates moderate accuracy in both classes, as seen in TP-rate, Precision, and Recall. The 
MCC is 0.257, indicating moderate overall model quality.  

 

Table 9. Accuracy of AdaBoostM1 in detail. 

Metrics no-recurrence-
events recurrence-events Weighted Average     

TP-rate 0.821 0.424 0.703 
FP-rate 0.576 0.179 0.458 

Precision 0.771 0.5 0.69 
Recall 0.821 0.424 0.703 

F-measure 0.795 0.459 0.695 
MCC 0.257 0.257 0.257 

ROC-Area 0.697 0.697 0.697 
PRC-Area 0.833 0.494 0.732 

 

Fig. 7 depicts the confusion matrix and events classification of the AdaBoostM1 classifier. 
The model correctly predicted 165 instances of "no-recurrence-events" and 36 instances of 
"recurrence-events." However, it made 36 FP predictions for "no-recurrence-events" and 49 
FN predictions for "recurrence-events. 

 

 
Fig. 7. Events classification of AdaBoostM1 classifier. 
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4.5 Performance of BayesNet Classifier 
Table 10 presents the summary of the BayesNet classifier, including the time taken to build 

the model (0.04 seconds) and the number of cross-validation folds (10).  
 

Table 10. BayesNet classifier summary. 
Metrics Values 

The correctly classified instances 206 72.03% 
The incorrectly classified instances 80 27.97% 

The Kappa statistic 0.2919  
MAE 0.3297  

RMSE 0.4566  
RAE 78.79%  

RRSE 99.90%  
The total number of instances 286  

 
Table 11 presents the performance metrics for the BayesNet classifier. Also, it indicates a 

moderate ability of the model to correctly classify instances in both classes, as shown by 
metrics like TP-rate, Precision, and Recall. The MCC of 0.295 suggests moderate overall 
model quality.  

 
Table 11. Detailed accuracy assessment for the BayesNet classifier. 

Metrics no-recurrence-
events recurrence-events Weighted 

Average     
TP-rate 0.841 0.435 0.72 
FP-rate 0.565 0.159 0.444 

Precision 0.779 0.536 0.707 
Recall 0.841 0.435 0.72 

F-measure 0.809 0.481 0.711 
MCC 0.295 0.295 0.295 

ROC-Area 0.698 0.698 0.698 
PRC-Area 0.833 0.51 0.737 

 
Fig. 8 depicts the confusion matrix and events classification of the BayesNet classifier. It 

correctly predicted 169 instances of "no-recurrence-events" and 37 instances of "recurrence-
events." However, it made 32 FP predictions for "no-recurrence-events" and 48 FN predictions 
for "recurrence-events." 
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Fig. 8. Events classification by BayesNet classifier. 

 

4.6 Comparison of the Proposed Models 
This study implemented various classifiers like MLP, J48, LogitBoost, AdBoostM1, and 

BeyesNet for pattern recognition. Table 12 presents the performance results for various 
classifiers based on their F-measure and Accuracy scores. It demonstrates that the J48 (DT) 
classifier achieves the highest F-measure and accuracy at 0.713 and 71.3%, respectively, 
indicating its superior performance in classifying instances.  

 
Table 12. A comparative analysis proposed classifiers. 

Classifier F-measure Accuracy 
MLP 0.647 64.7% 
J48 0.713 71.3% 

LogitBoost 0.705 70.5% 
AdBoostM1 0.695 69.5% 

BeyesNet 0.711 71.1% 
 

4.7 Further Evaluation of the J48 Classifier 
The J48 classifier is further evaluated regarding validation fold and percentage splitting to 

find better results. Regarding 5-fold validation, Table 13 presents a breakdown of the accuracy 
metrics for the J48 classifier, considering various parameters and their respective classes. 

 
Table 13. J48 classifier accuracy in detail. 

Metrics no-recurrence-events recurrence-events Weighted Average     

TP-rate 0.96 0.224 0.741 
FP-rate 0.776 0.04 0.558 

Precision 0.745 0.704 0.733 
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Recall 0.96 0.224 0.741 
F-measure 0.839 0.339 0.691 

MCC 0.287 0.287 0.287 
ROC-Area 0.582 0.582 0.582 
PRC-Area 0.728 0.444 0.643 

 
The accuracy of 10 fold is 71.3, whereas the accuracy of 5 folds is 69%, which is reduced. 

So, 10 folds of J48 are further evaluated with different percentage splits, as presented in Table 
14. 
 

Table 14. Evaluation of 10-fold J48 Classifier with different percentage splits. 

Split (%) Metrics 
no-

recurrence-
events 

recurrence-
events 

Weighted 
Average 

50 

TP-rate 0.938 0.191 0.692 
FP-rate 0.809 0.063 0.563 

Precision 0.703 0.6 0.669 
Recall 0.938 0.191 0.692 

F-measure 0.804 0.29 0.635 
MCC 0.198 0.198 0.198 

ROC-Area 0.656 0.656 0.656 

PRC-Area 0.754 0.466 0.66 

90 

TP-rate 0.895 0.2 0.655 
FP-rate 0.8 0.105 0.56 

Precision 0.68 0.5 0.618 
Recall 0.895 0.2 0.655 

F-measure 0.773 0.286 0.605 
MCC 0.131 0.131 0.131 

ROC-Area 0.626 0.626 0.626 
PRC-Area 0.734 0.419 0.625 

35 

TP-rate 0.89 0.373 0.726 
FP-rate 0.627 0.11 0.463 

Precision 0.753 0.611 0.708 
Recall 0.89 0.373 0.726 

F-measure 0.816 0.463 0.704 
MCC 0.309 0.309 0.309 

ROC-Area 0.637 0.637 0.637 
PRC-Area 0.761 0.429 0.656 

73 
TP-rate 0.959 0.214 0.688 
FP-rate 0.786 0.041 0.515 
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Precision 0.681 0.75 0.706 
Recall 0.959 0.214 0.688 

F-measure 0.797 0.333 0.628 
MCC 0.273 0.273 0.273 

ROC-Area 0.577 0.577 0.577 
PRC-Area 0.678 0.48 0.606 

40 

TP-rate 0.872 0.327 0.698 
FP-rate 0.673 0.128 0.499 

Precision 0.734 0.545 0.674 
Recall 0.872 0.327 0.698 

F-measure 0.797 0.409 0.673 
MCC 0.236 0.236 0.236 

ROC-Area 0.646 0.646 0.646 
PRC-Area 0.759 0.416 0.649 

 
Table 14 contains detailed accuracy and performance metrics of J48 split percentages 50, 

90, 35, 73, and 40. As per split 50, the model excels in identifying "no-recurrence-events" with 
a high TP-rate, but it faces challenges in classifying "recurrence-events." Regarding the J48 
split percentage 90, the model highlights a higher TP-rate for "no-recurrence-events" but 
challenges in classifying "recurrence-events." The Precision values are somewhat balanced. 
The MCC of 0.131 indicates a moderate overall model quality. 
Regarding the J48 split percentage, the model achieves a relatively high TP-rate for "no-
recurrence-events" but faces challenges with "recurrence-events." The Precision values show 
a reasonable balance between the classes. The MCC of 0.309 suggests moderate overall model 
quality. In evaluating J48 split percentage 73, the model identifies "no-recurrence-events" with 
a high TP-rate but struggles with "recurrence-events." The Precision values show a reasonable 
balance between the classes. The MCC of 0.273 indicates moderate overall model quality. 
Finally, the model is evaluated with J48 split percentage 40 and observed that the model is 
relatively proficient at identifying "no-recurrence-events" with a high TP-rate but faces 
challenges with "recurrence-events." The Precision values suggest a reasonable balance 
between the classes. The MCC of 0.236 indicates moderate overall model quality. These 
findings evaluate the model's ability to distinguish between the two classes, with room for 
improvement in some areas. 

Table 15 compares different split percentages on the accuracy of a machine-learning model. 
It demonstrates that a split percentage of 66% yields the highest accuracy at 71%, indicating 
that this particular data split ratio is most effective for this model. Other split percentages result 
in varying levels of accuracy, suggesting the importance of selecting an appropriate data split 
strategy for optimal model performance. 

 
Table 15. Accuracy analysis of J48 on different split percentages. 

Split (%) Accuracy 
50 63.5% 
90 60.5% 
35 70.4% 
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66 71% 
73 62.8% 
40 67.3% 

5. Discussion 
This study implanted different classifiers, but the maximum accuracy (71%) is achieved 

using J48 (DT). Weka was used to implement the classifiers, and then different classifiers were 
tried. The results of these classifiers are presented, but the results of some classifiers are not 
presented if their accuracy is less than 69%. We mentioned some accuracies, but some are 
ignored, e.g., as the summary of Naïve Bayes classier is presented in Table 16. The detailed 
accuracy by class is presented in Table 17. 
 
 Table 16. Summary of Naïve Bayes classier. 

Metrics Values 

The correctly classified instances 19 65.5172% 
The incorrectly classified instances 10 34.4828% 

The Kappa Statistic 0.157  
MAE 0.3895  

RMSE 0.5399  
RAE 89.3597%  

RRSE 112.9399%  
The total number of instances 29  

 
Table 17. Detailed accuracy of Naïve Bayes. 

Metrics no-recurrence-
events recurrence-events Weighted 

Average 
TP-rate 0.842 0.300 0.655 
FP-rate 0.700 0.158 0.513 

Precision 0.696 0.500 0.628 
Recall 0.842 0.300 0.655 

F-measure 0.762 0.375 0.628 
MCC 0.167 0.176 0.167 

ROC-Area 0.518 0.518 0.518 
PRC-Area 0.727 0.467 0.637 

 
Weka provides the F-measure and ROC curves to analyze the accuracy of the model. The 

weighted F-measure of J48 is 0.713, and the ROC is 0.58, which indicates the performance of 
J48 on a given dataset. The accuracies of different classifiers are evaluated again J48 provided 
the maximum F-measure weighted average value of 71.3 compared to other classifiers.  
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6. Conclusion 
This comprehensive study uses many machine learning classifiers to classify the 

occurrence or non-occurrence of breast tumors based on various features and data points 
related to individuals' medical history. The study evaluated several classification methods, 
including MLP, AdaBoostM1, logitBoost, BayesNet, and J48. The effectiveness of these 
classifiers is assessed using various performance metrics. The findings indicated that the J48 
(DT) classifier outperformed the other classifiers, demonstrating the highest accuracy among 
the tested methods. With an accuracy of 71%, J48 demonstrated its effectiveness in accurately 
classifying instances into the appropriate class. It was also found that a split percentage of 66% 
provided the optimal balance for achieving the highest accuracy. 

Furthermore, the impact of fold values on the model's accuracy is explored by modifying 
the fold value from 10 to 5. However, the results indicated that the 10-fold cross-validation 
produced the best accuracy results. This research highlights the potential of employing pattern 
recognition and DT-based classifiers, particularly J48, in accurately classifying cancer-related 
instances. These findings offer valuable insights for developing cancer assessment models and 
significantly contribute to the field of computational biology. 

7. Limitations and Future Work 
In future studies, the following limitations should be considered: 
• The class distribution is imbalanced, which may lead to biased model performance 

towards the majority class. 
• The presence of missing values in the dataset can affect the accuracy of the classifiers 

if not properly handled. 
• Limited feature selection may result in models not capturing all relevant patterns in 

the data. 
• The models trained on this dataset may not generalize well to other datasets or 

populations. 
• Using a publicly available dataset instead of real-time clinical data may limit the 

generalizability of the classification results to real-world scenarios. It may not capture 
the full range of variability and complexities present in clinical settings. 

• These models are suitable for smaller datasets with fewer features. However, deep 
learning (DL) models better classify complex patterns and high-dimensional data. 
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