• Title/Summary/Keyword: tree biomass

Search Result 300, Processing Time 0.025 seconds

Tree Form and Biomass Allocation of Quercus species, Larix leptolepis (Sieb. et Zucc.) Gordon and Pinus koraiensis Sieb. et Zucc. in Kwangju-Gun, Kyunggi-Do (경기도(京畿道) 광주지방(廣州地方)에서 자라는 참나무류, 낙엽송(落葉松) 및 잣나무의 수형특성(樹形特性)과 물질분배(物質分配))

  • Lee, Don Koo;Kim, Gab Tae
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.2
    • /
    • pp.208-213
    • /
    • 1997
  • Tree form characteristics and biomass distribution and volume increment for Quercus spp., Larix leptolepis and Pinus koraiensis growing in Kwangju-Gun, Kyunggi-Do were investigated. P. koraiensis showed higher crown percentage than L. leptolepis, indicating that P. koraiensis maybe shade-tolerant species. Biomass allocation by tree height showed significant difference among three species. Stem biomass distributed more dimminishing along tree height with Quercus spp. and P. koraiensis than L. leptolepis. The allometric pattern of leaf-and branch biomass appeared as normal distribution. Present biomass was highest in L. leptolepis showing 171.1tons/ha and followed by P. koraiensis and Quercus spp, with 75.3tons/ha and 61.6tons/ha, respectively.

  • PDF

Allometric Equations and Biomass Expansion Factors by Stand Density in Cryptomeria japonica Plantations (삼나무 조림지의 임분밀도에 따른 상대생장식과 현존량 확장계수)

  • Gwon, Jung-Hwa;Seo, Huiyeong;Lee, Kwang-Soo;You, Byung-Oh;Park, Yong-Bae;Jeong, Jaeyeob;Kim, Choonsig
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.2
    • /
    • pp.175-181
    • /
    • 2014
  • This study was conducted to evaluate stand density-specific and generalized allometric equations, and biomass expansion factors (BEFs) for two stand densities (high density of 47-year-old: $667tree{\cdot}ha^{-1}$; low density of 49-year-old: $267tree{\cdot}ha^{-1}$) of Cryptomeria japonica plantations in Namhae-gun, located in the southern Korea. Biomass in each tree component, i.e. foliage, branch, and stem, was quantified by destructive tree harvesting. Allometric regression equations of each tree component were significant (P<0.05) with diameter at breast height (DBH) accounting for 80-96% of the variation except for branch biomass in high density or foliage and cone biomass in low density. Generalized allometric equations can be used to estimate the biomass of C. japonica plantations because the slopes of allometric equations were not significantly different by the stand density. The biomass expansion factors (BEFs) were significantly lower in the high stand density (1.33) than in the low stand density (1.50). The results indicate that BEFs were affected by different stand density, while allometric equations were little related to the stand density.

Biomass and Carbon Storage Pattern in Natural and Plantation Forest Ecosystem of Chhattisgarh, India

  • Jhariya, Manoj Kumar;Yadav, Dhiraj Kumar
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • We studied natural and plantation forest ecosystem of Sarguja in Chhattisgarh, India in order to understand how vegetation biomass, carbon stock and its allocation patterns vary among the sites. For this, stratified random sampling was opted to measure the different layers of vegetation. Wide floral diversity was found in the natural forest site as compared to the teak stand. Overall, 17 tree species found in natural forest comprising 8 families while in the teak stand 6 species were recorded. In understory strata 23 species were recorded (18 herbs and 5 shrubs) in natural forest whereas in teak stand 20 herb species and 3 shrubs were found. Great variation was also seen in the population dynamics of the different vegetation stratum in concerned sites. The sapling, seedling and herb density was found to be highest in natural stand while tree and shrub density was more in teak stand. Results indicated that stand biomass of the natural site was $321.19t\;ha^{-1}$ while in the teak stand it was $276.61t\;ha^{-1}$. The total biomass of tree layer in plantation site was $245.22t\;ha^{-1}$ and natural forest $241.44t\;ha^{-1}$. The sapling, seedling, shrub and forest floor biomass was found highest under natural forest as compared to the teak plantation site. Carbon stock has similar trend as that of biomass accumulation in natural forest and teak stand. Higher biomass accumulation and carbon stock were recorded in the higher girth class gradation of the population structure. Proper efforts are required to manage these diverse ecosystems to obtain higher biomass and sustainable ecological services.

The Characteristics and Biomass Distribution in Crown of Larix olgensis in Northeastern China

  • Chen, Dongsheng;Li, Fengri
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.2
    • /
    • pp.204-212
    • /
    • 2010
  • This study was performed in 22 unthinned Larix olgensis plantations in northeast China. Data were collected on 95 sample trees of different canopy positions and the diameter at breast height ($d_{1.3}$) ranged from 5.7 cm to 40.2 cm. The individual tree models for the prediction of vertical distribution of live crown, branch and needle biomass were built. Our study showed that the crown, branch and needle biomass distributions were most in the location of 60% crown length. These results were also parallel to previous crown studies. The cumulative relative biomass of live crown, branch and needle were fitted by the sigmoid shape curve and the fitting results were quite well. Meanwhile, we developed the crown ratio and width models. Tree height was the most important predictor for crown ratio model. A negative competition factor, ccf and bas which reflected the effect of suppression on a tree, reduced the crown ratio estimates. The height-diameter ratio was a significant predictor. The higher the height-diameter ratio, the higher crown ratio is. Diameter at breast height is the strongest predictor in crown width model. The models can be used for the planning of harvesting operations, for the selection of feasible harvesting methods, and for the estimation of nutrient removals of different harvesting practices.

CONIFER FOREST BIOMASS ESTIMATION USING MULTI ANGLE SPECTRUM OBSERVATION

  • Kajiwara, Koji;Ono, Yuhsaku;Honda, Yoshiaki
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.394-397
    • /
    • 2008
  • This research aimed at developing a technique for estimating the tree height using BRF (Bi-directional Reflectance Factor) through the clarification of the relation between shape of the tree crown and the tree height and the relations between the shape of the tree crown and BRF. This paper, reports the results of analyses of data acquired by field measurements done to clarify relation between crown shape and tree height.

  • PDF

Prediction of Forest Biomass Resources and Harvesting Cost Using GIS (GIS를 이용한 산림 바이오매스 자원량 및 수확비용 예측)

  • Lee, Jin-A;Oh, Jae-Heun;Cha, Du-Song
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.1
    • /
    • pp.81-89
    • /
    • 2013
  • Nowadays, excessive using of fossil fuel contributes to global warming. Also, this phenomenon increases steadily. Therefore forest biomass from logging residues has received attention. The goal of this study was to determine the sustainability and economic feasibility of forest-biomass energy source. Accordingly, forest biomass resource was calculated, and harvesting and transporting machines which can be used in investing area were chosen, when using forest biomass as energy source. And then through these data, the harvesting cost was decided. The forest biomass resource calculated, thinned trees and logging residues, was 37,330.23 $m^3$ and 14,073.60 ton, respectively. When harvesting timber in each sub-compartment, the average thinned trees yield was 120.73 $m^3$, and tree logging residues was 402.80 ton. The use of tower yarder as harvesting and transporting equipments in study area was 85.4% and 66.7%, respectively, in up hill and down hill yarding. The average harvesting cost of biomass in the possibility area of timber yarding operation was expensive as 81,757 won/$m^3$, 85,434 won/m3 and 50,003 won/ton, respectively, in thinned trees and logging residue. If using data from this research analysis, tree could be felled by choosing sub-compartment.

Above- and Below-ground Biomass and Energy Content of Quercus mongolica (신갈나무의 지상부와 지하부 바이오매스 및 에너지량)

  • Kwon, Ki-Cheol;Lee, Don-Koo
    • Journal of Korea Foresty Energy
    • /
    • v.25 no.1
    • /
    • pp.31-38
    • /
    • 2006
  • Quercus mongolica is the most common hardwood species distributed in Korea. This study was conducted to investigate the biomass and energy content of the belowground biomass of Q. mongolica and to obtain the regression equation for estimating root biomass using the tree height and diameter at breast height (DBH). A total of 18 sample trees ranging 20 to 60 year-old were selected in the study sites. Tree height, DBH, age, and weight of stemwood, sapwood, heartwood, stembark, branch, leaf, and root were measured for total biomass. The highly positive correlation was shown between the biomass of most of variables of aboveground components and root biomass. The regression equation of the aboveground total biomass was $log\;W_A\;=\;1.469\;+\;0.992\;log\;D^2H\;(R^2 =0.99)$. The regression equation of the belowground biomass was $log\;W_R\;=\;1.527\;+\;0.808\;log\;D^2H\;(R^2\;=\;0.97)$. The mean energy contents of sapwood, heartwood, bark, leaf, and root were 19,594 J/g DW, 19,571 J/g DW, 19,999 J/g DW, 20,664 J/g DW, and 19,273 J/g DW, respectively. The results obtained from this study can be used to estimate biomass and energy content of belowground using easily measurable variables such as DBH and tree height ranging from 20 to 60-year-old Q. mongolica stands.

  • PDF

Allometry and Canopy Dynamics of Pinus rigida, Larix leptolepis, and Quercus serrata Stands in Yangpyeong Area (양평지역 리기다소나무, 낙엽송, 졸참나무의 allometry와 임관동태 연구)

  • Kim, Jong-Sung;Son, Yowhan;Kim, Zin-Suh
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.2
    • /
    • pp.186-197
    • /
    • 1995
  • Site-specific allometric equations relating aboveground tree component biomass and leaf area to tree diameter, basal area, sapwood cross-sectional area and sapwood volume were developed using the destructive harvesting method for Pinus rigida Mill., Larix leptolepis Gordon, and Quercus serrata Thunb. stands in Yangpyeong, Kyonggi Province. There were significantly strong correlations between aboveground tree component biomass or leaf area and diameter at breast height (DBH), basal area, sapwood area and sapwood volume. For a similar diameter tree, the three species had a similar stem wood biomass. However, carbon allocation patterns to stem bark, foliage, branch and total aboveground biomass differed among the three species. Specific leaf area and the ratio of leaf area to sapwood cross-sectional area of the three species were significantly different. Allometric equations seemed To be related to leaf habit or leaf longevity. To elucidate the effect of leaf habit or leaf longevity on allometry and canopy characteristics clearly, more intensive studies are needed.

  • PDF

Relationship Between Above-and Below-Ground Biomass for Norway Spruce (Picea abies) : Estimating Root System Biomass from Breast Height Diameter (독일가문비나무(Picea abies [L.] Karst)의 지상부(地上部)와 지하부(地下部) 생체량(生體量)에 관(關)한 연구(硏究) : 흉고직경(胸高直徑)에 의한 뿌리생체량(生體量) 추정(推定))

  • Lee, Do-Hyung
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.3
    • /
    • pp.338-345
    • /
    • 2001
  • This study was conducted to elucidate the relationship between the root structure and the crown structure of Norway spruce(Picea abies [L.] Karst), and thereafter to obtain the regression equation for the estimation of relative root and needle biomass using the tree height and diameter at breast height(DBH) without measurement of root and needle biomass. The study site was Barbis stands of Harz region located in central part of Germany. Five dominant and three co-dominant trees of 30 to 40 year-old Norway spruce were selected and tree height, diameter at breast height, clear bole length, weight of total needle and branch, cross section and sapwood area at breast height for biomass of above ground part and also the length of root, the number of root, the weight of root, the cross section area of root etc. by dividing the horizontal and vertical roots for below ground part of tree were measured. The significantly correlation was shown between the biomass of most of variables of above ground parts and those of below ground parts. For the diameter of breast height to the weight of total root, regression equation was Y = 3.56X - 45.94 and decision coefficient was 0.96 showing highly correlation. The weight of total branches and needles, and the tree height etc. of above ground parts showed highly positive relationship with below ground biomass. The results obtained from this study can be used to the estimating of biomass of below ground using variables of above ground such as DBH in the 30 to 40 year-old Norway spruce stands.

  • PDF

Biomass and Net Primary Production of Quercus acutissima Natural Forest Ecosystems in Pohang (포항 지역의 상수리나무 천연림 생태계의 물질생산에 관한 연구)

  • 박관수;권기원;송호경
    • Journal of Korea Foresty Energy
    • /
    • v.21 no.1
    • /
    • pp.25-31
    • /
    • 2002
  • This study was carried out to estimate aboveground biomass and net primary production in an average 37-year-old Quercus acutissima stand of Pohang area. Ten sample trees were cut in the forest and soil samples were collected in August, 2001. Estimation for aboveground biomass and net primary production was made by the equation model Wt=$aD^b$ where Wt is ovendry weight in kg and D is DBH in cm. Total aboveground biomass was 115.47ton/ha in the study forest. The proportion of each tree component to total aboveground biomass was high in order of bolewood(63.9%), branches(19.8%), bolebark(16.2%) and leaves(1.2%) in the study forest. Aboveground total net primary production was estimated at 7.89ton/ha in the study area. The proportion of each tree component to total net primary production was high in order of bolewood, bolebark, branch, and leaves.

  • PDF