• Title/Summary/Keyword: tree based learning

Search Result 435, Processing Time 0.028 seconds

A Study on the Stereotype of ICT SMEs' R&D: Empirical Evidence from Korea (ICT 중소기업 R&D의 스테레오타입에 대한 연구 : 한국의 사례를 중심으로)

  • Jun, Seung-pyo;Choi, San;Jung, JaeOong
    • Journal of Korea Technology Innovation Society
    • /
    • v.20 no.2
    • /
    • pp.334-367
    • /
    • 2017
  • The ICT industry has been the main driver of Korea's economy with international competitiveness and is expected to be the growth engine that will revitalize the currently depressed economy. A broad range of different perspectives and opinions on the industry exist in Korea and overseas. Some of these are stereotypes, not all of which are based on objective evidence. Stereotypes refer to widely-held fixed opinions on a specific group and do not necessarily have negative connotations. However, they should not be viewed lightly because they can substantially affect decision-making process. In this regard, this study sought to review the stereotypes of ICT industry and identify objective and relative stereotypes. In the study, a decision-tree analysis was conducted on a survey result of 3,300 small and medium-sized enterprises (SMEs) in order to identify Korean ICT companies' characteristics that distinguish them from other technology companies. The decision-tree analysis, a data mining process based on machine learning, took a total of 291 variables into account in 10 subjects such as: corporate business in general, technology development activities as well as organization and people in technology development. Identifying the variables that distinguish ICT companies from other technology companies with the decision-tree analysis, the study then came up with a list of objective stereotypes of ICT companies. The findings from the stereotypes of Korean ICT companies are as follows. First, the companies are in need of technology policies that help R&D planning and market penetration. Second, policies must better support the companies working to sell new products or explore new business. Third, the companies need policies that support secure protection of development outcomes and proper management of IP rights. Fourth, the administrative procedures related to governmental support for ICT companies' R&D projects must be simplified. It is hoped that the outcome of this study will provide meaningful guidance in establishment, implementation and evaluation of technology policies for ICT SMEs, particularly to policymakers or researchers in relevant government agencies who determine R&D policies for ICT SMEs.

Estimation of Water Quality Index for Coastal Areas in Korea Using GOCI Satellite Data Based on Machine Learning Approaches (GOCI 위성영상과 기계학습을 이용한 한반도 연안 수질평가지수 추정)

  • Jang, Eunna;Im, Jungho;Ha, Sunghyun;Lee, Sanggyun;Park, Young-Gyu
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.3
    • /
    • pp.221-234
    • /
    • 2016
  • In Korea, most industrial parks and major cities are located in coastal areas, which results in serious environmental problems in both coastal land and ocean. In order to effectively manage such problems especially in coastal ocean, water quality should be monitored. As there are many factors that influence water quality, the Korean Government proposed an integrated Water Quality Index (WQI) based on in situmeasurements of ocean parameters(bottom dissolved oxygen, chlorophyll-a concentration, secchi disk depth, dissolved inorganic nitrogen, and dissolved inorganic phosphorus) by ocean division identified based on their ecological characteristics. Field-measured WQI, however, does not provide spatial continuity over vast areas. Satellite remote sensing can be an alternative for identifying WQI for surface water. In this study, two schemes were examined to estimate coastal WQI around Korea peninsula using in situ measurements data and Geostationary Ocean Color Imager (GOCI) satellite imagery from 2011 to 2013 based on machine learning approaches. Scheme 1 calculates WQI using estimated water quality-related factors using GOCI reflectance data, and scheme 2 estimates WQI using GOCI band reflectance data and basic products(chlorophyll-a, suspended sediment, colored dissolved organic matter). Three machine learning approaches including Random Forest (RF), Support Vector Regression (SVR), and a modified regression tree(Cubist) were used. Results show that estimation of secchi disk depth produced the highest accuracy among the ocean parameters, and RF performed best regardless of water quality-related factors. However, the accuracy of WQI from scheme 1 was lower than that from scheme 2 due to the estimation errors inherent from water quality-related factors and the uncertainty of bottom dissolved oxygen. In overall, scheme 2 appears more appropriate for estimating WQI for surface water in coastal areas and chlorophyll-a concentration was identified the most contributing factor to the estimation of WQI.

Response Modeling for the Marketing Promotion with Weighted Case Based Reasoning Under Imbalanced Data Distribution (불균형 데이터 환경에서 변수가중치를 적용한 사례기반추론 기반의 고객반응 예측)

  • Kim, Eunmi;Hong, Taeho
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.29-45
    • /
    • 2015
  • Response modeling is a well-known research issue for those who have tried to get more superior performance in the capability of predicting the customers' response for the marketing promotion. The response model for customers would reduce the marketing cost by identifying prospective customers from very large customer database and predicting the purchasing intention of the selected customers while the promotion which is derived from an undifferentiated marketing strategy results in unnecessary cost. In addition, the big data environment has accelerated developing the response model with data mining techniques such as CBR, neural networks and support vector machines. And CBR is one of the most major tools in business because it is known as simple and robust to apply to the response model. However, CBR is an attractive data mining technique for data mining applications in business even though it hasn't shown high performance compared to other machine learning techniques. Thus many studies have tried to improve CBR and utilized in business data mining with the enhanced algorithms or the support of other techniques such as genetic algorithm, decision tree and AHP (Analytic Process Hierarchy). Ahn and Kim(2008) utilized logit, neural networks, CBR to predict that which customers would purchase the items promoted by marketing department and tried to optimized the number of k for k-nearest neighbor with genetic algorithm for the purpose of improving the performance of the integrated model. Hong and Park(2009) noted that the integrated approach with CBR for logit, neural networks, and Support Vector Machine (SVM) showed more improved prediction ability for response of customers to marketing promotion than each data mining models such as logit, neural networks, and SVM. This paper presented an approach to predict customers' response of marketing promotion with Case Based Reasoning. The proposed model was developed by applying different weights to each feature. We deployed logit model with a database including the promotion and the purchasing data of bath soap. After that, the coefficients were used to give different weights of CBR. We analyzed the performance of proposed weighted CBR based model compared to neural networks and pure CBR based model empirically and found that the proposed weighted CBR based model showed more superior performance than pure CBR model. Imbalanced data is a common problem to build data mining model to classify a class with real data such as bankruptcy prediction, intrusion detection, fraud detection, churn management, and response modeling. Imbalanced data means that the number of instance in one class is remarkably small or large compared to the number of instance in other classes. The classification model such as response modeling has a lot of trouble to recognize the pattern from data through learning because the model tends to ignore a small number of classes while classifying a large number of classes correctly. To resolve the problem caused from imbalanced data distribution, sampling method is one of the most representative approach. The sampling method could be categorized to under sampling and over sampling. However, CBR is not sensitive to data distribution because it doesn't learn from data unlike machine learning algorithm. In this study, we investigated the robustness of our proposed model while changing the ratio of response customers and nonresponse customers to the promotion program because the response customers for the suggested promotion is always a small part of nonresponse customers in the real world. We simulated the proposed model 100 times to validate the robustness with different ratio of response customers to response customers under the imbalanced data distribution. Finally, we found that our proposed CBR based model showed superior performance than compared models under the imbalanced data sets. Our study is expected to improve the performance of response model for the promotion program with CBR under imbalanced data distribution in the real world.

A Smart Farm Environment Optimization and Yield Prediction Platform based on IoT and Deep Learning (IoT 및 딥 러닝 기반 스마트 팜 환경 최적화 및 수확량 예측 플랫폼)

  • Choi, Hokil;Ahn, Heuihak;Jeong, Yina;Lee, Byungkwan
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.6
    • /
    • pp.672-680
    • /
    • 2019
  • This paper proposes "A Smart Farm Environment Optimization and Yield Prediction Platform based on IoT and Deep Learning" which gathers bio-sensor data from farms, diagnoses the diseases of growing crops, and predicts the year's harvest. The platform collects all the information currently available such as weather and soil microbes, optimizes the farm environment so that the crops can grow well, diagnoses the crop's diseases by using the leaves of the crops being grown on the farm, and predicts this year's harvest by using all the information on the farm. The result shows that the average accuracy of the AEOM is about 15% higher than that of the RF and about 8% higher than the GBD. Although data increases, the accuracy is reduced less than that of the RF or GBD. The linear regression shows that the slope of accuracy is -3.641E-4 for the ReLU, -4.0710E-4 for the Sigmoid, and -7.4534E-4 for the step function. Therefore, as the amount of test data increases, the ReLU is more accurate than the other two activation functions. This paper is a platform for managing the entire farm and, if introduced to actual farms, will greatly contribute to the development of smart farms in Korea.

Managing the Reverse Extrapolation Model of Radar Threats Based Upon an Incremental Machine Learning Technique (점진적 기계학습 기반의 레이더 위협체 역추정 모델 생성 및 갱신)

  • Kim, Chulpyo;Noh, Sanguk
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.4
    • /
    • pp.29-39
    • /
    • 2017
  • Various electronic warfare situations drive the need to develop an integrated electronic warfare simulator that can perform electronic warfare modeling and simulation on radar threats. In this paper, we analyze the components of a simulation system to reversely model the radar threats that emit electromagnetic signals based on the parameters of the electronic information, and propose a method to gradually maintain the reverse extrapolation model of RF threats. In the experiment, we will evaluate the effectiveness of the incremental model update and also assess the integration method of reverse extrapolation models. The individual model of RF threats are constructed by using decision tree, naive Bayesian classifier, artificial neural network, and clustering algorithms through Euclidean distance and cosine similarity measurement, respectively. Experimental results show that the accuracy of reverse extrapolation models improves, while the size of the threat sample increases. In addition, we use voting, weighted voting, and the Dempster-Shafer algorithm to integrate the results of the five different models of RF threats. As a result, the final decision of reverse extrapolation through the Dempster-Shafer algorithm shows the best performance in its accuracy.

A study on the rock mass classification in boreholes for a tunnel design using machine learning algorithms (머신러닝 기법을 활용한 터널 설계 시 시추공 내 암반분류에 관한 연구)

  • Lee, Je-Kyum;Choi, Won-Hyuk;Kim, Yangkyun;Lee, Sean Seungwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.469-484
    • /
    • 2021
  • Rock mass classification results have a great influence on construction schedule and budget as well as tunnel stability in tunnel design. A total of 3,526 tunnels have been constructed in Korea and the associated techniques in tunnel design and construction have been continuously developed, however, not many studies have been performed on how to assess rock mass quality and grade more accurately. Thus, numerous cases show big differences in the results according to inspectors' experience and judgement. Hence, this study aims to suggest a more reliable rock mass classification (RMR) model using machine learning algorithms, which is surging in availability, through the analyses based on various rock and rock mass information collected from boring investigations. For this, 11 learning parameters (depth, rock type, RQD, electrical resistivity, UCS, Vp, Vs, Young's modulus, unit weight, Poisson's ratio, RMR) from 13 local tunnel cases were selected, 337 learning data sets as well as 60 test data sets were prepared, and 6 machine learning algorithms (DT, SVM, ANN, PCA & ANN, RF, XGBoost) were tested for various hyperparameters for each algorithm. The results show that the mean absolute errors in RMR value from five algorithms except Decision Tree were less than 8 and a Support Vector Machine model is the best model. The applicability of the model, established through this study, was confirmed and this prediction model can be applied for more reliable rock mass classification when additional various data is continuously cumulated.

A Study on Goddesses Hair Arts Shown in History of Arts (미술사에 표현된 여신의 헤어 아트 연구)

  • Lee, Hyun-Jin;Kim, Sun-Ah
    • Fashion & Textile Research Journal
    • /
    • v.9 no.6
    • /
    • pp.663-670
    • /
    • 2007
  • Arts is the expression of reasoning and conscious life of human and arouse human the concept of existence, utmost emotion and excellent thoughts. Also it makes humans life very abundant. I make it come first to get rid of the art thirst on the opposite sight of technical one for hair as on part of humans body. Next purpose is that to confirm the esthetic value of 'hair arts' by solidify the academic ground of beauty arts through creating 'hair arts' works and learning and make the direction for the beauty industry and education of the next generation. In this study I investigated the Greek myth and the hair styles of ancient Greek Goddesses. On the basis of that symbols I elaborated hair formative works made of metal and studied, analyzed and displayed that. Work No.1 'aphne' pictures the second of changing into a laurel tree avoiding the love. Secondly 'Muse Erato' was exhibited the peaceful figure that have enough the fine melodies. 'Leda' brings out the feature of Leda resembling a swan and the fourth piece, 'Eos' conveys the brilliant and mystery of dawn. So this study conducted based on the concept of practical hair and have made efforts to be close to theoretical manufacturing research needed at making hair arts works and academic one needed at organic design composition for pioneering new field, 'art hair.' I hope these 'hair arts' works make creativity of the practise hair alive. It will be very thankful to me if this study can help even though slightly for splendid beauty arts to make its status firm as a one part of arts, and there are following studies.

Candidate First Moves for Solving Life-and-Death Problems in the Game of Go, using Kohonen Neural Network (코호넨 신경망을 이용 바둑 사활문제를 풀기 위한 후보 첫 수들)

  • Lee, Byung-Doo;Keum, Young-Wook
    • Journal of Korea Game Society
    • /
    • v.9 no.1
    • /
    • pp.105-114
    • /
    • 2009
  • In the game of Go, the life-and-death problem is a fundamental problem to be definitely overcome when implementing a computer Go program. To solve local Go problems such as life-and-death problems, an important consideration is how to tackle the game tree's huge branching factor and its depth. The basic idea of the experiment conducted in this article is that we modelled the human behavior to get the recognized first moves to kill the surrounded group. In the game of Go, similar life-and-death problems(patterns) often have similar solutions. To categorize similar patterns, we implemented Kohonen Neural Network(KNN) based clustering and found that the experimental result is promising and thus can compete with a pattern matching method, that uses supervised learning with a neural network, for solving life-and-death problems.

  • PDF

A video transmission system for a high quality and fault tolerance based on multiple paths using TCP/IP (다중 경로를 이용한 TCP/IP 기반 고품질 및 고장 감내 비디오 전송 시스템)

  • Kim, Nam-Su;Lee, Jong-Yeol;Pyun, Kihyun
    • Journal of Internet Computing and Services
    • /
    • v.15 no.6
    • /
    • pp.1-8
    • /
    • 2014
  • As the e-learning spreads widely and demands on the internet video service, transmitting video data for many users over the Internet becomes popular. To satisfy this needs, the traditional approach uses a tree structure that uses the video server as the root node. However, this approach has the danger of stopping the video service even when one of the nodes along the path has a some problem. In this paper, we propose a video-on-demand service that uses multiple paths. We add new paths for backup and speed up for transmitting the video data. We show by simulation experiments that our approach provides a high-quality of video service.

A Study on the Korean Continuous Speech Recognition using Adaptive Pruning Algorithm and PDT-SSS Algorithm (적응 프루닝 알고리즘과 PDT-SSS 알고리즘을 이용한 한국어 연속음성인식에 관한 연구)

  • 황철준;오세진;김범국;정호열;정현열
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.6
    • /
    • pp.524-533
    • /
    • 2001
  • Efficient continuous speech recognition system for practical applications requires that the processing be carried out in real time and high recognition accuracy. In this paper, we study the acoustic models by adopting the PDT-SSS algorithm and the language models by iterative learning so as to improve the speech recognition accuracy. And the adaptive pruning algorithm is applied to the continuous speech. To verify the effectiveness of proposed method, we carried out the continuous speech recognition for the Korean air flight reservation task. Experimental results show that the adopted algorithm has the average 90.9% for continuous speech recognition and the average 90.7% for word recognition accuracy including continuous speech. And in case of adopting the adaptive pruning algorithm to continuous speech, it reduces the recognition time of about 1.2 seconds(15%) without any loss of accuracy. From the result, we proved the effectiveness of the PDT-SSS algorithm and the adaptive pruning algorithm.

  • PDF