This paper describes a program which learns good strategies for two-poison, deterministic, zero-sum board games of perfect information. The program learns by simply playing the game against either a human or computer opponent. The results of the program's teaming of a lot of games are reported. The program consists of search kernel and a move generator module. Only the move generator is modified to reflect the rules of the game to be played. The kernel uses a temporal difference procedure combined with a backpropagation neural network to team good evaluation functions for the game being played. Central to the performance of the program is the search procedure. This is a the capture tree search used in most successful janggi playing programs. It is based on the idea of using search to correct errors in evaluations of positions. This procedure is described, analyzed, tested, and implemented in the game-teaming program. Both the test results and the performance of the program confirm the results of the analysis which indicate that search improves game playing performance for sufficiently accurate evaluation functions.
Journal of the Society of Naval Architects of Korea
/
v.42
no.5
s.143
/
pp.534-541
/
2005
Until now, Korean shipyards have accumulated a great amount of data. But they do not have appropriate tools to utilize the data in practical works. Engineering data contains experts' experience and know-how in its own. It is very useful to extract knowledge or information from the accumulated existing data by using data mining technique This paper treats an evolutionary computation based on genetic programming (GP), which can be one of the components to realize data mining. The paper deals with linear models of GP for the regression or approximation problem when given learning samples are not sufficient. The linear model, which is a function of unknown parameters, is built through extracting all possible base functions from the standard GP tree by utilizing the symbolic processing algorithm. In addition to a standard linear model consisting of mathematic functions, one variant form of a linear model, which can be built using low order Taylor series and can be converted into the standard form of a polynomial, is considered in this paper. The suggested model can be utilized as a designing tool to predict design parameters with small accumulated data.
Nanofluids have recently triggered a substantial scientific interest as cooling media. However, their stability is challenging for successful engagement in industrial applications. Different factors, including temperature, nanoparticles and base fluids characteristics, pH, ultrasonic power and frequency, agitation time, and surfactant type and concentration, determine the nanofluid stability regime. Indeed, it is often too complicated and even impossible to accurately find the conditions resulting in a stabilized nanofluid. Furthermore, there are no empirical, semi-empirical, and even intelligent scenarios for anticipating the stability of nanofluids. Therefore, this study introduces a straightforward and reliable intelligent classifier for discriminating among the stability regimes of alumina-water nanofluids based on the Zeta potential margins. In this regard, various intelligent classifiers (i.e., deep learning and multilayer perceptron neural network, decision tree, GoogleNet, and multi-output least squares support vector regression) have been designed, and their classification accuracy was compared. This comparison approved that the multilayer perceptron neural network (MLPNN) with the SoftMax activation function trained by the Bayesian regularization algorithm is the best classifier for the considered task. This intelligent classifier accurately detects the stability regimes of more than 90% of 345 different nanofluid samples. The overall classification accuracy and misclassification percent of 90.1% and 9.9% have been achieved by this model. This research is the first try toward anticipting the stability of water-alumin nanofluids from some easily measured independent variables.
본 연구는 국방과학기술 분야의 특허 및 논문 실적을 이용하여 통계기반 기계학습 모델 4 종을 학습하고, 실제 분석 대상기관의 데이터 입력결과를 분석하여 실용성에 대한 한계점 분석을 목적으로 한다. 기존 연구에서는 특허분류코드를 기준으로 분류하여 특수 목적으로 활용하거나 세부 연구 범위 내 연구 주제탐색 및 특징연구 등 미시적인 관점에서의 상세연구 활용 목적인 반면, 본 연구는 거시적인 관점에서 연구의 전체적인 흐름과 경향성 파악을 목적으로 한다. 이에 ICT 기술 138 종의 특허 및 논문 30,965 건과 국방과학기술 192 종의 특허 및 논문 23,406 건을 학습데이터로 각 모델을 학습하였다. 비교한 통계기반 학습모델은 Support Vector Machines, Decision Tree, Naive Bayes, XGBoost 모델이다. 학습데이터에 대한 학습검증 단계에서는 최대 99.4%의 성능을 보였다. 다만, 실제 분석대상기관의 특허 및 논문 12,824 건으로 입력분석한 결과, 모델별 편향성 문제, 데이터 전처리 이슈, 다중클래스 및 다중레이블 문제를 확인, 도출한 문제에 대한 해결방안을 제시하고 추가 연구의 방향성을 제시한다.
The aim of this study was to estimate the benefit from repeated examinations in the diagnosis of enterobiasis in nursery school groups, and to test the effectiveness of individual-based risk predictions using different methods. A total of 604 children were examined using double, and 96 using triple, anal swab examinations. The questionnaires for parents, structured observations, and interviews with supervisors were used to identify factors of possible infection risk. In order to model the risk of enterobiasis at individual level, a similarity-based machine learning and prediction software Constud was compared with data mining methods in the Statistica 8 Data Miner software package. Prevalence according to a single examination was 22.5%; the increase as a result of double examinations was 8.2%. Single swabs resulted in an estimated prevalence of 20.1% among children examined 3 times; double swabs increased this by 10.1%, and triple swabs by 7.3%. Random forest classification, boosting classification trees, and Constud correctly predicted about 2/3 of the results of the second examination. Constud estimated a mean prevalence of 31.5% in groups. Constud was able to yield the highest overall fit of individual-based predictions while boosting classification tree and random forest models were more effective in recognizing Enterobius positive persons. As a rule, the actual prevalence of enterobiasis is higher than indicated by a single examination. We suggest using either the values of the mean increase in prevalence after double examinations compared to single examinations or group estimations deduced from individual-level modelled risk predictions.
Kim, Hyunbin;Kim, Mingyu;Park, Yonggun;Yang, Sang-Yun;Chung, Hyunwoo;Kwon, Ohkyung;Yeo, Hwanmyeong
Journal of the Korean Wood Science and Technology
/
v.47
no.2
/
pp.229-238
/
2019
Various wood defects occur during tree growing or wood processing. Thus, to use wood practically, it is necessary to objectively assess their quality based on the usage requirement by accurately classifying their defects. However, manual visual grading and species classification may result in differences due to subjective decisions; therefore, computer-vision-based image analysis is required for the objective evaluation of wood quality and the speeding up of wood production. In this study, the SIFT+k-NN and CNN models were used to implement a model that automatically classifies knots and analyze its accuracy. Toward this end, a total of 1,172 knot images in various shapes from five domestic conifers were used for learning and validation. For the SIFT+k-NN model, SIFT technology was used to extract properties from the knot images and k-NN was used for the classification, resulting in the classification with an accuracy of up to 60.53% when k-index was 17. The CNN model comprised 8 convolution layers and 3 hidden layers, and its maximum accuracy was 88.09% after 1205 epoch, which was higher than that of the SIFT+k-NN model. Moreover, if there is a large difference in the number of images by knot types, the SIFT+k-NN tended to show a learning biased toward the knot type with a higher number of images, whereas the CNN model did not show a drastic bias regardless of the difference in the number of images. Therefore, the CNN model showed better performance in knot classification. It is determined that the wood knot classification by the CNN model will show a sufficient accuracy in its practical applicability.
Fraudulent companies or sellers strategically manipulate reviews to influence customers' purchase decisions; therefore, the reliability of reviews has become crucial for customer decision-making. Since customers increasingly rely on online reviews to search for more detailed information about products or services before purchasing, many researchers focus on detecting manipulated reviews. However, the main problem in detecting manipulated reviews is the difficulties with obtaining data with manipulated reviews to utilize machine learning techniques with sufficient data. Also, the number of manipulated reviews is insufficient compared with the number of non-manipulated reviews, so the class imbalance problem occurs. The class with fewer examples is under-represented and can hamper a model's accuracy, so machine learning methods suffer from the class imbalance problem and solving the class imbalance problem is important to build an accurate model for detecting manipulated reviews. Thus, we propose an OpenAI-based reviews generation model to solve the manipulated reviews imbalance problem, thereby enhancing the accuracy of manipulated reviews detection. In this research, we applied the novel autoregressive language model - GPT-3 to generate reviews based on manipulated reviews. Moreover, we found that applying GPT-3 model for oversampling manipulated reviews can recover a satisfactory portion of performance losses and shows better performance in classification (logit, decision tree, neural networks) than traditional oversampling models such as random oversampling and SMOTE.
KSCE Journal of Civil and Environmental Engineering Research
/
v.41
no.2
/
pp.123-131
/
2021
The buffer is a key component of an engineered barrier system that safeguards the disposal of high-level radioactive waste. Buffers are located between disposal canisters and host rock, and they can restrain the release of radionuclides and protect canisters from the inflow of ground water. Since considerable heat is released from a disposal canister to the surrounding buffer, the thermal conductivity of the buffer is a very important parameter in the entire disposal safety. For this reason, a lot of research has been conducted on thermal conductivity prediction models that consider various factors. In this study, the thermal conductivity of a buffer is estimated using the machine learning methods of: linear regression, decision tree, support vector machine (SVM), ensemble, Gaussian process regression (GPR), neural network, deep belief network, and genetic programming. In the results, the machine learning methods such as ensemble, genetic programming, SVM with cubic parameter, and GPR showed better performance compared with the regression model, with the ensemble with XGBoost and Gaussian process regression models showing best performance.
Water resources which is formed of surface and groundwater, are considered as one of the pivotal natural resources worldwide. Since last century, the rapid population growth as well as accelerated industrialization and explosive urbanization lead to boost demand for groundwater for domestic, industrial and agricultural use. In fact, better management of groundwater can play crucial role in sustainable development; therefore, determining accurate location of groundwater based groundwater potential mapping is indispensable. In recent years, integration of machine learning techniques, Geographical Information System (GIS) and Remote Sensing (RS) are popular and effective methods employed for groundwater potential mapping. For determining the status of the integrated approach, a systematic review of 94 directly relevant papers were carried out over the six previous years (2015-2020). According to the literature review, the number of studies published annually increased rapidly over time. The total study area spanned 15 countries, and 85.1% of studies focused on Iran, India, China, South Korea, and Iraq. 20 variables were found to be frequently involved in groundwater potential investigations, of which 9 factors are almost always present namely slope, lithology (geology), land use/land cover (LU/LC), drainage/river density, altitude (elevation), topographic wetness index (TWI), distance from river, rainfall, and aspect. The data integration was carried random forest, support vector machine and boost regression tree among the machine learning techniques. Our study shows that for optimal results, groundwater mapping must be used as a tool to complement field work, rather than a low-cost substitute. Consequently, more study should be conducted to enhance the generalization and precision of groundwater potential map.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.31-31
/
2023
During December 2022, the northeast monsoon, which dominates the south and the Gulf of Thailand, had significant rainfall that impacted the lower southern region, causing flash floods, landslides, blustery winds, and the river exceeding its bank. The Golok River, located in Narathiwat, divides the border between Thailand and Malaysia was also affected by rainfall. In flood management, instruments for measuring precipitation and water level have become important for assessing and forecasting the trend of situations and areas of risk. However, such regions are international borders, so the installed measuring telemetry system cannot measure the rainfall and water level of the entire area. This study aims to predict 72 hours of water level and evaluate the situation as information to support the government in making water management decisions, publicizing them to relevant agencies, and warning citizens during crisis events. This research is applied to machine learning (ML) for water level prediction of the Golok River, Lan Tu Bridge area, Sungai Golok Subdistrict, Su-ngai Golok District, Narathiwat Province, which is one of the major monitored rivers. The eXtreme Gradient Boosting (XGBoost) algorithm, a tree-based ensemble machine learning algorithm, was exploited to predict hourly water levels through the R programming language. Model training and testing were carried out utilizing observed hourly rainfall from the STH010 station and hourly water level data from the X.119A station between 2020 and 2022 as main prediction inputs. Furthermore, this model applies hourly spatial rainfall forecasting data from Weather Research and Forecasting and Regional Ocean Model System models (WRF-ROMs) provided by Hydro-Informatics Institute (HII) as input, allowing the model to predict the hourly water level in the Golok River. The evaluation of the predicted performances using the statistical performance metrics, delivering an R-square of 0.96 can validate the results as robust forecasting outcomes. The result shows that the predicted water level at the X.119A telemetry station (Golok River) is in a steady decline, which relates to the input data of predicted 72-hour rainfall from WRF-ROMs having decreased. In short, the relationship between input and result can be used to evaluate flood situations. Here, the data is contributed to the Operational support to the Special Water Resources Management Operation Center in Southern Thailand for flood preparedness and response to make intelligent decisions on water management during crisis occurrences, as well as to be prepared and prevent loss and harm to citizens.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.