• Title/Summary/Keyword: tree based learning

Search Result 436, Processing Time 0.026 seconds

An Intelligent Game Theoretic Model With Machine Learning For Online Cybersecurity Risk Management

  • Alharbi, Talal
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.390-399
    • /
    • 2022
  • Cyber security and resilience are phrases that describe safeguards of ICTs (information and communication technologies) from cyber-attacks or mitigations of cyber event impacts. The sole purpose of Risk models are detections, analyses, and handling by considering all relevant perceptions of risks. The current research effort has resulted in the development of a new paradigm for safeguarding services offered online which can be utilized by both service providers and users. customers. However, rather of relying on detailed studies, this approach emphasizes task selection and execution that leads to successful risk treatment outcomes. Modelling intelligent CSGs (Cyber Security Games) using MLTs (machine learning techniques) was the focus of this research. By limiting mission risk, CSGs maximize ability of systems to operate unhindered in cyber environments. The suggested framework's main components are the Threat and Risk models. These models are tailored to meet the special characteristics of online services as well as the cyberspace environment. A risk management procedure is included in the framework. Risk scores are computed by combining probabilities of successful attacks with findings of impact models that predict cyber catastrophe consequences. To assess successful attacks, models emulating defense against threats can be used in topologies. CSGs consider widespread interconnectivity of cyber systems which forces defending all multi-step attack paths. In contrast, attackers just need one of the paths to succeed. CSGs are game-theoretic methods for identifying defense measures and reducing risks for systems and probe for maximum cyber risks using game formulations (MiniMax). To detect the impacts, the attacker player creates an attack tree for each state of the game using a modified Extreme Gradient Boosting Decision Tree (that sees numerous compromises ahead). Based on the findings, the proposed model has a high level of security for the web sources used in the experiment.

Imbalanced Data Improvement Techniques Based on SMOTE and Light GBM (SMOTE와 Light GBM 기반의 불균형 데이터 개선 기법)

  • Young-Jin, Han;In-Whee, Joe
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.12
    • /
    • pp.445-452
    • /
    • 2022
  • Class distribution of unbalanced data is an important part of the digital world and is a significant part of cybersecurity. Abnormal activity of unbalanced data should be found and problems solved. Although a system capable of tracking patterns in all transactions is needed, machine learning with disproportionate data, which typically has abnormal patterns, can ignore and degrade performance for minority layers, and predictive models can be inaccurately biased. In this paper, we predict target variables and improve accuracy by combining estimates using Synthetic Minority Oversampling Technique (SMOTE) and Light GBM algorithms as an approach to address unbalanced datasets. Experimental results were compared with logistic regression, decision tree, KNN, Random Forest, and XGBoost algorithms. The performance was similar in accuracy and reproduction rate, but in precision, two algorithms performed at Random Forest 80.76% and Light GBM 97.16%, and in F1-score, Random Forest 84.67% and Light GBM 91.96%. As a result of this experiment, it was confirmed that Light GBM's performance was similar without deviation or improved by up to 16% compared to five algorithms.

Machine Learning Model for Predicting the Residual Useful Lifetime of the CNC Milling Insert (공작기계의 절삭용 인서트의 잔여 유효 수명 예측 모형)

  • Won-Gun Choi;Heungseob Kim;Bong Jin Ko
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.111-118
    • /
    • 2023
  • For the implementation of a smart factory, it is necessary to collect data by connecting various sensors and devices in the manufacturing environment and to diagnose or predict failures in production facilities through data analysis. In this paper, to predict the residual useful lifetime of milling insert used for machining products in CNC machine, weight k-NN algorithm, Decision Tree, SVR, XGBoost, Random forest, 1D-CNN, and frequency spectrum based on vibration signal are investigated. As the results of the paper, the frequency spectrum does not provide a reliable criterion for an accurate prediction of the residual useful lifetime of an insert. And the weighted k-nearest neighbor algorithm performed best with an MAE of 0.0013, MSE of 0.004, and RMSE of 0.0192. This is an error of 0.001 seconds of the remaining useful lifetime of the insert predicted by the weighted-nearest neighbor algorithm, and it is considered to be a level that can be applied to actual industrial sites.

Method for Assessing Landslide Susceptibility Using SMOTE and Classification Algorithms (SMOTE와 분류 기법을 활용한 산사태 위험 지역 결정 방법)

  • Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.6
    • /
    • pp.5-12
    • /
    • 2023
  • Proactive assessment of landslide susceptibility is necessary for minimizing casualties. This study proposes a methodology for classifying the landslide safety factor using a classification algorithm based on machine learning techniques. The high-risk area model is adopted to perform the classification and eight geotechnical parameters are adopted as inputs. Four classification algorithms-namely decision tree, k-nearest neighbor, logistic regression, and random forest-are employed for comparing classification accuracy for the safety factors ranging between 1.2 and 2.0. Notably, a high accuracy is demonstrated in the safety factor range of 1.2~1.7, but a relatively low accuracy is obtained in the range of 1.8~2.0. To overcome this issue, the synthetic minority over-sampling technique (SMOTE) is adopted to generate additional data. The application of SMOTE improves the average accuracy by ~250% in the safety factor range of 1.8~2.0. The results demonstrate that SMOTE algorithm improves the accuracy of classification algorithms when applied to geotechnical data.

Performance Enhancement of Tree Kernel-based Protein-Protein Interaction Extraction by Parse Tree Pruning and Decay Factor Adjustment (구문 트리 가지치기 및 소멸 인자 조정을 통한 트리 커널 기반 단백질 간 상호작용 추출 성능 향상)

  • Choi, Sung-Pil;Choi, Yun-Soo;Jeong, Chang-Hoo;Myaeng, Sung-Hyon
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.2
    • /
    • pp.85-94
    • /
    • 2010
  • This paper introduces a novel way to leverage convolution parse tree kernel to extract the interaction information between two proteins in a sentence without multiple features, clues and complicated kernels. Our approach needs only the parse tree alone of a candidate sentence including pairs of protein names which is potential to have interaction information. The main contribution of this paper is two folds. First, we show that for the PPI, it is imperative to execute parse tree pruning removing unnecessary context information in deciding whether the current sentence imposes interaction information between proteins by comparing with the latest existing approaches' performance. Secondly, this paper presents that tree kernel decay factor can play an pivotal role in improving the extraction performance with the identical learning conditions. Consequently, we could witness that it is not always the case that multiple kernels with multiple parsers perform better than each kernels alone for PPI extraction, which has been argued in the previous research by presenting our out-performed experimental results compared to the two existing methods by 19.8% and 14% respectively.

A GA-based Inductive Learning System for Extracting the PROSPECTOR`s Classification Rules (프러스펙터의 분류 규칙 습득을 위한 유전자 알고리즘 기반 귀납적 학습 시스템)

  • Kim, Yeong-Jun
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.11
    • /
    • pp.822-832
    • /
    • 2001
  • We have implemented an inductive learning system that learns PROSPECTOR-rule-style classification rules from sets of examples. In our a approach, a genetic algorithm is used in which a population consists of rule-sets and rule-sets generate offspring through the exchange of rules relying on genetic operators such as crossover, mutation, and inversion operators. In this paper, we describe our learning environment centering on the syntactic structure and meaning of classification rules, the structure of a population, and the implementation of genetic operators. We also present a method to evaluate the performance of rules and a heuristic approach to generate rules, which are developed to implement mutation operators more efficiently. Moreover, a method to construct a classification system using multiple learned rule-sets to enhance the performance of a classification system is also explained. The performance of our learning system is compared with other learning algorithms, such as neural networks and decision tree algorithms, using various data sets.

  • PDF

CNN-based Fast Split Mode Decision Algorithm for Versatile Video Coding (VVC) Inter Prediction

  • Yeo, Woon-Ha;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.8 no.3
    • /
    • pp.147-158
    • /
    • 2021
  • Versatile Video Coding (VVC) is the latest video coding standard developed by Joint Video Exploration Team (JVET). In VVC, the quadtree plus multi-type tree (QT+MTT) structure of coding unit (CU) partition is adopted, and its computational complexity is considerably high due to the brute-force search for recursive rate-distortion (RD) optimization. In this paper, we aim to reduce the time complexity of inter-picture prediction mode since the inter prediction accounts for a large portion of the total encoding time. The problem can be defined as classifying the split mode of each CU. To classify the split mode effectively, a novel convolutional neural network (CNN) called multi-level tree (MLT-CNN) architecture is introduced. For boosting classification performance, we utilize additional information including inter-picture information while training the CNN. The overall algorithm including the MLT-CNN inference process is implemented on VVC Test Model (VTM) 11.0. The CUs of size 128×128 can be the inputs of the CNN. The sequences are encoded at the random access (RA) configuration with five QP values {22, 27, 32, 37, 42}. The experimental results show that the proposed algorithm can reduce the computational complexity by 11.53% on average, and 26.14% for the maximum with an average 1.01% of the increase in Bjøntegaard delta bit rate (BDBR). Especially, the proposed method shows higher performance on the sequences of the A and B classes, reducing 9.81%~26.14% of encoding time with 0.95%~3.28% of the BDBR increase.

Sensitivity Analysis of Decision Tree's Learning Effectiveness in Boolean Query Reformulation (불리언 질의 재구성에서 의사결정나무의 학습 성능 감도 분석)

  • 윤정미;김남호;권영식
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.4
    • /
    • pp.141-149
    • /
    • 1998
  • One of the difficulties in using the current Boolean-based information retrieval systems is that it is hard for a user, especially a novice, to formulate an effective Boolean query. One solution to this problem is to let the system formulate a query for a user from his relevance feedback documents in this research, an intelligent query reformulation mechanism based on ID3 is proposed and the sensitivity of its retrieval effectiveness, i.e., recall, precision, and E-measure, to various input settings is analyzed. The parameters in the input settings is the number of relevant documents. Experiments conducted on the test set of Medlars revealed that the effectiveness of the proposed system is in fact sensitive to the number of the initial relevant documents. The case with two or more initial relevant documents outperformed the case with one initial relevant document with statistical significances. It is our conclusion that formulation of an effective query in the proposed system requires at least two relevant documents in its initial input set.

  • PDF

A Multi-Stage 75 K Fuzzy Modeling Method by Genetic Programming

  • Li Bo;Cho Kyu-Kab
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.877-884
    • /
    • 2002
  • This paper deals with a multi-stage TSK fuzzy modeling method by using Genetic Programming (GP). Based on the time sequence of sampling data the best structural change points of complex systems are detemined by using GP, and also the moving window is simultaneously introduced to overcome the excessive amount of calculation during the generating procedure of GP tree. Therefore, a multi-stage TSK fuzzy model that attempts to represent a complex problem by decomposing it into multi-stage sub-problems is addressed and its learning algorithm is proposed based on the Radial Basis Function (RBF) network. This approach allows us to determine the model structure and parameters by stages so that the problems ran be simplified.

  • PDF

VKOSPI Forecasting and Option Trading Application Using SVM (SVM을 이용한 VKOSPI 일 중 변화 예측과 실제 옵션 매매에의 적용)

  • Ra, Yun Seon;Choi, Heung Sik;Kim, Sun Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.177-192
    • /
    • 2016
  • Machine learning is a field of artificial intelligence. It refers to an area of computer science related to providing machines the ability to perform their own data analysis, decision making and forecasting. For example, one of the representative machine learning models is artificial neural network, which is a statistical learning algorithm inspired by the neural network structure of biology. In addition, there are other machine learning models such as decision tree model, naive bayes model and SVM(support vector machine) model. Among the machine learning models, we use SVM model in this study because it is mainly used for classification and regression analysis that fits well to our study. The core principle of SVM is to find a reasonable hyperplane that distinguishes different group in the data space. Given information about the data in any two groups, the SVM model judges to which group the new data belongs based on the hyperplane obtained from the given data set. Thus, the more the amount of meaningful data, the better the machine learning ability. In recent years, many financial experts have focused on machine learning, seeing the possibility of combining with machine learning and the financial field where vast amounts of financial data exist. Machine learning techniques have been proved to be powerful in describing the non-stationary and chaotic stock price dynamics. A lot of researches have been successfully conducted on forecasting of stock prices using machine learning algorithms. Recently, financial companies have begun to provide Robo-Advisor service, a compound word of Robot and Advisor, which can perform various financial tasks through advanced algorithms using rapidly changing huge amount of data. Robo-Adviser's main task is to advise the investors about the investor's personal investment propensity and to provide the service to manage the portfolio automatically. In this study, we propose a method of forecasting the Korean volatility index, VKOSPI, using the SVM model, which is one of the machine learning methods, and applying it to real option trading to increase the trading performance. VKOSPI is a measure of the future volatility of the KOSPI 200 index based on KOSPI 200 index option prices. VKOSPI is similar to the VIX index, which is based on S&P 500 option price in the United States. The Korea Exchange(KRX) calculates and announce the real-time VKOSPI index. VKOSPI is the same as the usual volatility and affects the option prices. The direction of VKOSPI and option prices show positive relation regardless of the option type (call and put options with various striking prices). If the volatility increases, all of the call and put option premium increases because the probability of the option's exercise possibility increases. The investor can know the rising value of the option price with respect to the volatility rising value in real time through Vega, a Black-Scholes's measurement index of an option's sensitivity to changes in the volatility. Therefore, accurate forecasting of VKOSPI movements is one of the important factors that can generate profit in option trading. In this study, we verified through real option data that the accurate forecast of VKOSPI is able to make a big profit in real option trading. To the best of our knowledge, there have been no studies on the idea of predicting the direction of VKOSPI based on machine learning and introducing the idea of applying it to actual option trading. In this study predicted daily VKOSPI changes through SVM model and then made intraday option strangle position, which gives profit as option prices reduce, only when VKOSPI is expected to decline during daytime. We analyzed the results and tested whether it is applicable to real option trading based on SVM's prediction. The results showed the prediction accuracy of VKOSPI was 57.83% on average, and the number of position entry times was 43.2 times, which is less than half of the benchmark (100 times). A small number of trading is an indicator of trading efficiency. In addition, the experiment proved that the trading performance was significantly higher than the benchmark.