Acknowledgement
The author would like to thank the Deanship of Scientific Research at Majmaah University for supporting this work.
References
- Sikkandar, Mohamed Yacin. "Design a Contactless Authentication System Using Hand Gestures Technique in COVID-19 Panic Situation." Annals of the Romanian Society for Cell Biology (2021): 2149-2159.
- Behera, Santosh K., Pradeep Kumar, Debi P. Dogra, and Partha P. Roy. "A Robust Biometric Authentication System for Handheld Electronic Devices by Intelligently Combining 3D Finger Motions and Cerebral Responses." IEEE Transactions on Consumer Electronics 67, no. 1 (2021): 58-67. https://doi.org/10.1109/TCE.2021.3055419
- Shaukat, K., Luo, S., Varadharajan, V., Hameed, I. A., &Xu, M. (2020). A survey on machine learning techniques for cyber security in the last decade. IEEE Access, 8, 222310-222354. https://doi.org/10.1109/ACCESS.2020.3041951
- Manshaei, M. H., Zhu, Q., Alpcan, T., Bacsar, T., &Hubaux, J. P. (2013). Game theory meets network security and privacy. ACM Computing Surveys (CSUR), 45(3), 1-39.
- Barreno, M., Nelson, B., Joseph, A. D., &Tygar, J. D. (2010). The security of machine learning. Machine Learning, 81(2), 121-148. https://doi.org/10.1007/s10994-010-5188-5
- Thakur, K., Qiu, M., Gai, K., & Ali, M. L. (2015, November). An investigation on cyber security threats and security models. In 2015 IEEE 2nd international conference on cyber security and cloud computing (pp. 307-311). IEEE.
- Kumar, V. (2005). Parallel and distributed computing for cybersecurity. IEEE Distributed Systems Online, 6(10).
- Martinez Torres, J., Iglesias Comesana, C., &Garcia-Nieto, P. J. (2019). Machine learning techniques applied to cybersecurity. International Journal of Machine Learning and Cybernetics, 10(10), 2823-2836. https://doi.org/10.1007/s13042-018-00906-1
- Shaukat, K., Luo, S., Varadharajan, V., Hameed, I. A., Chen, S., Liu, D., & Li, J. (2020). Performance comparison and current challenges of using machine learning techniques in cybersecurity. Energies, 13(10), 2509. https://doi.org/10.3390/en13102509
- Yavanoglu, O., &Aydos, M. (2017, December). A review on cyber security datasets for machine learning algorithms. In 2017 IEEE international conference on big data (big data) (pp. 2186-2193). IEEE.
- Ford, V., &Siraj, A. (2014, October). Applications of machine learning in cyber security. In Proceedings of the 27th International Conference on Computer Applications in Industry and Engineering (Vol. 118). Kota Kinabalu, Malaysia: IEEE Xplore.
- Soni, S., &Bhushan, B. (2019, July). Use of Machine Learning algorithms for designing efficient cyber security solutions. In 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT) (Vol. 1, pp. 1496-1501). IEEE.
- Rosenberg, I., Shabtai, A., Elovici, Y., &Rokach, L. (2021). Adversarial machine learning attacks and defense methods in the cyber security domain. ACM Computing Surveys (CSUR), 54(5), 1-36.
- Cruz, T., Rosa, L., Proenca, J., Maglaras, L., Aubigny, M., Lev, L., ...&Simoes, P. (2016). A cybersecurity detection framework for supervisory control and data acquisition systems. IEEE Transactions on Industrial Informatics, 12(6), 2236-2246. https://doi.org/10.1109/TII.2016.2599841
- Jarjoui, S., &Murimi, R. (2021). A Framework for Enterprise Cybersecurity Risk Management. In Advances in Cybersecurity Management (pp. 139-161). Springer, Cham.
- Gordon, L. A., Loeb, M. P., & Zhou, L. (2020). Integrating cost-benefit analysis into the NIST Cybersecurity Framework via the Gordon-Loeb Model. Journal of Cybersecurity, 6(1), tyaa005. https://doi.org/10.1093/cybsec/tyaa005
- Sivanathan, A., Gharakheili, H. H., &Sivaraman, V. (2020). Managing IoT cyber-security using programmable telemetry and machine learning. IEEE Transactions on Network and Service Management, 17(1), 60-74. https://doi.org/10.1109/tnsm.2020.2971213
- Makawana, P. R., &Jhaveri, R. H. (2018). A bibliometric analysis of recent research on machine learning for cyber security. Intelligent communication and computational technologies, 213-226.
- Fernandez de Arroyabe, I., & Fernandez de Arroyabe, J. C. (2021). The severity and effects of Cyber-breaches in SMEs: a machine learning approach. Enterprise Information Systems, 1-27.
- El-Sofany, H. F. (2020). A New Cybersecurity Approach for Protecting Cloud Services against DDoS Attacks. International Journal of Intelligent Engineering and Systems, 13(2), 205-215. https://doi.org/10.22266/ijies2020.0430.20
- Mattina, B., Yeung, F., Hsu, A., Savoy, D., Tront, J., & Raymond, D. (2017, April). MARCS: mobile augmented reality for cybersecurity. In Proceedings of the 12th Annual Conference on Cyber and Information Security Research (pp. 1-4).
- Kure, H. I., Islam, S., &Razzaque, M. A. (2018). An integrated cyber security risk management approach for a cyber-physical system. Applied Sciences, 8(6), 898. https://doi.org/10.3390/app8060898
- Hong, K. S., Chi, Y. P., Chao, L. R., & Tang, J. H. (2003). An integrated system theory of information security management. Information Management & Computer Security.
- Meszaros, J., &Buchalcevova, A. (2017). Introducing OSSF: A framework for online service cybersecurity risk management. computers& security, 65, 300-313. https://doi.org/10.1016/j.cose.2016.12.008
- Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., & Chen, K. (2015). Xgboost: extreme gradient boosting. R package version 0.4-2, 1(4), 1-4.
- Sheridan, R. P., Wang, W. M., Liaw, A., Ma, J., & Gifford, E. M. (2016). Extreme gradient boosting as a method for quantitative structure-activity relationships. Journal of chemical information and modeling, 56(12), 2353-2360. https://doi.org/10.1021/acs.jcim.6b00591
- Turner, A. J., &Musman, S. (2018). Applying the cybersecurity game to a point-of-sale system. In Disciplinary Convergence in Systems Engineering Research (pp. 129-144). Springer, Cham.
- Musman, S., & Turner, A. (2018). A game theoretic approach to cyber security risk management. The Journal of DefenseModeling and Simulation, 15(2), 127-146. https://doi.org/10.1177/1548512917699724