• Title/Summary/Keyword: traveltime modeling

Search Result 13, Processing Time 0.021 seconds

3D traveltime calculation considering seismic velocity anisotropy (탄성파 속도 이방성을 고려한 3차원 주시 모델링)

  • Jeong, Chang-Ho;Suh, Jung-Hee
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.203-208
    • /
    • 2007
  • Due to the long tectonic history and the very complex geologic formations in Korea, the anisotropic characteristics of subsurface material may often change very greatly and locally. The algorithms for the travel time computation commonly used, however, may not give sufficiently precise results particularly for the complex and strong anisotropic model, since they are based on the two-dimensional (2D) earth and/or weak anisotropy assumptions. This study is intended to develope a three-dimensional (3D) modeling algorithm to precisely calculate the first arrival time in the complex anisotropic media. We assume 3D TTI (tilted transversely isotropy) medium having the arbitrary symmetry axis. The algorithm includes the 2D non-linear interpolation scheme to calculate the traveltimes inside the grid and the 3D traveltime mapping to fill the 3D model with first arrival times. The weak anisotropy assumption, moreover, can be overcome through devising a numerical approach of the steepest descent method in the calculation of minimum traveltime, instead of using approximate solution.

  • PDF

Seismic First Arrival Time Computation in 3D Inhomogeneous Tilted Transversely Isotropic Media (3차원 불균질 횡등방성 매질에 대한 탄성파 초동 주시 모델링)

  • Jeong, Chang-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.3
    • /
    • pp.241-249
    • /
    • 2006
  • Due to the long tectonic history and the very complex geologic formations in Korea, the anisotropic characteristics of subsurface material may often change very greatly and locally. The algorithms commonly used, however, may not give sufficiently precise computational results of traveltime data particularly for the complex and strong anisotropic model, since they are based on the two-dimensional (2D) earth and/or weak anisotropy assumptions. This study is intended to develope a three-dimensional (3D) modeling algorithm to precisely calculate the first arrival time in the complex anisotropic media. Considering the complex geology of Korea, we assume 3D TTI (tilted transversely isotropy) medium having the arbitrary symmetry axis. The algorithm includes the 2D non-linear interpolation scheme to calculate the traveltimes inside the grid and the 3D traveltime mapping to fill the 3D model with first arrival times. The weak anisotropy assumption, moreover, can be overcome through devising a numerical approach of the steepest descent method in the calculation of minimum traveltime, instead of using approximate solution. The performance of the algorithm developed in this study is demonstrated by the comparison of the analytic and numerical solutions for the homogeneous anisotropic earth as well as through the numerical experiment for the two layer model whose anisotropic properties are greatly different each other. We expect that the developed modeling algorithm can be used in the development of processing and inversion schemes of seismic data acquired in strongly anisotropic environment, such as migration, velocity analysis, cross-well tomography and so on.

3-D Traveltime and Amplitude Calculation using High-performance Parallel Finite-element Solver (고성능 병렬 유한요소 솔버를 이용한 3차원 주시와 진폭계산)

  • Yang, Dong-Woo;Kim, Jung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.4
    • /
    • pp.234-244
    • /
    • 2004
  • In order to calculate 3-dimensional wavefield using finite-element method in frequency domain, we must factor so huge sparse impedance matrix. Because of difficulties of handling of this huge impedance matrix, 3-dimensional wave equation modeling is conducted mainly in time domain. In this study, we simulate the 3-D wavefield using finite-element method in Laplace domain by combining high-performance parallel finite-element solver and SWEET (Suppressed Wave Equation Estimation of Traveltime) algorithm which can calculate the traveltime and the amplitude. To verify this combination, we applied it to the SEG/EAGE 3D salt model in serial and parallel computing environments.

Damped Wave Equation-based Traveltime Calculation using Embedded Boundary Method for Irregular Topography (Embedded Boundary Method를 이용한 불규칙한 지형에서의 감쇠 파동장 기반 초동주시 계산)

  • Hwang, Seongcheol;Lee, Ganghoon;Pyun, Sukjoon
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.1
    • /
    • pp.12-20
    • /
    • 2019
  • The first-arrival traveltime calculation method based on the damped wave equation overcomes the shortcomings of ray-tracing methods. Since this algorithm needs to solve the damped wave equation, numerical modeling is essential. However, it is not desirable to use the finite-difference method (FDM), which has good computational efficiency, for simulating the land seismic data because of irregular topography. Thus, the finite-element method (FEM) which requires higher computational cost than FDM has been used to correctly describe the irregular topography. In this study, we computed first-arrival traveltimes in an irregular topographic model using FDM incorporating embedded boundary method (EBM) to overcome this problem. To verify the accuracy and efficiency of the proposed algorithm, we compared our results with those of FEM. As a result, the proposed method using EBM not only provided the same accuracy as the FEM but also showed the improved computational efficiency.

Weighted Kirchhoff Prestack Depth Migration using Smooth Background Model (Smooth Background Model(SBM)을 이용한 가중 키리히호프 중합전 심도구조보정)

  • Ko, Seung-Won;Yang, Seung-Jin;Shin, Chang-Su
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.3
    • /
    • pp.84-88
    • /
    • 2001
  • For the elastic migation, the velocity errors between the initial velocity model and true velocity model seriously affect the migrated images. The assumption of an initial velocity model, thus, is one of the critical factor for the successful migration. In case of applying the layered earth model as an initial velocity model, the layer boundary having large velocity contrast can not be defined well with conventional traveltime calculation algolithms and we have the difficulties for expressing the characteristics of the real subsurface. Smooth Background Model (SBM) we have applied as an initial velocity model in our study is characterized to be linearly varying the velocity with the depth, which can express the velocity variation in the subsurface properly. Thus it can properly be applied to traveltime calculation algolithms such as Vidale's method. In this study, Kirchhoff operator for prestack migration was used and the absolute amplitude obtained by modeling was applied as a weighted value to consider the true amplitude for initial model. Initial velocity model for migration was determined by using stacking velocity and we applied this model to real data.

  • PDF

Seismic Traveltime Tomography using Neural Network (신경망 이론을 이용한 탄성파 주시 토모그래피의 연구)

  • Kim, Tae-Yeon;Yoon, Wang-Jung
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.4
    • /
    • pp.167-173
    • /
    • 1999
  • Since the resolution of the 2-D hole-to-hole seismic traveltime tomography is affected by the limited ray transmission angle, various methods were used to improve the resolution. Linear traveltime interpolation(LTI) ray tracing method was chosen for forward-modeling method. Inversion results using the LTI method were compared with those using the other ray tracing methods. As an inversion algorithm, SIRT method was used. In the iterative non-linear inversion method, the cost of ray tracing is quite expensive. To reduce the cost, each raypath was stored and the inversion was performed from this information. Using the proposed method, fast convergence was achieved. Inversion results are likely to be affected by the initial velocity guess, especially when the ray transmission angle was limited. To provide a good initial guess for the inversion, generalized regression neural network(GRNN) method was used. When the transmitted raypath angle is not limited or the geological model is very complex, the inversion results are not affected by initial velocity model very much. Since the raypath angles, however, are limited in most geophysical tomographic problems, the enhancement of resolution in tomography can be achieved by providing a proper initial velocity model by another inversion algorithm such as GRNN.

  • PDF

Acoustic 2-D Full-waveform Inversion with Initial Guess Estimated by Traveltime Tomography (주시 토모그래피와 음향 2차원 전파형 역산의 적용성에 관한 연구)

  • Han Hyun Chul;Cho Chang Soo;Suh Jung Hee;Lee Doo Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.49-56
    • /
    • 1998
  • Seismic tomography has been widely used as high resolution subsurface imaging techniques in engineering applications. Although most of the techniques have been using travel time inversion, waveform method is being driven forward owing to the progress of computational environments. Although full-waveform inversion method has been known as the best method in terms of model resolving power without high-frequency restriction and weak scattering approximation, it has practical disadvantage that it is apt to get stuck in local minimum if the initial guess is far from the actual model and it consumes so much time to calculate. In this study, 2-D full-waveform inversion algorithm in acoustic medium is developed, which uses result of traveltime tomography as initial model. From the application on synthetic data, it is proved that this approach can efficiently reduce the problem of conventional approaches: our algorithm shows much faster convergence rate and improvement of model resolution. Result of application on physical modeling data also shows much improvement. It is expected that this algorithm can be applicable to real data.

  • PDF

Interactive analysis tools for the wide-angle seismic data for crustal structure study (Technical Report) (지각 구조 연구에서 광각 탄성파 자료를 위한 대화식 분석 방법들)

  • Fujie, Gou;Kasahara, Junzo;Murase, Kei;Mochizuki, Kimihiro;Kaneda, Yoshiyuki
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.26-33
    • /
    • 2008
  • The analysis of wide-angle seismic reflection and refraction data plays an important role in lithospheric-scale crustal structure study. However, it is extremely difficult to develop an appropriate velocity structure model directly from the observed data, and we have to improve the structure model step by step, because the crustal structure analysis is an intrinsically non-linear problem. There are several subjective processes in wide-angle crustal structure modelling, such as phase identification and trial-and-error forward modelling. Because these subjective processes in wide-angle data analysis reduce the uniqueness and credibility of the resultant models, it is important to reduce subjectivity in the analysis procedure. From this point of view, we describe two software tools, PASTEUP and MODELING, to be used for developing crustal structure models. PASTEUP is an interactive application that facilitates the plotting of record sections, analysis of wide-angle seismic data, and picking of phases. PASTEUP is equipped with various filters and analysis functions to enhance signal-to-noise ratio and to help phase identification. MODELING is an interactive application for editing velocity models, and ray-tracing. Synthetic traveltimes computed by the MODELING application can be directly compared with the observed waveforms in the PASTEUP application. This reduces subjectivity in crustal structure modelling because traveltime picking, which is one of the most subjective process in the crustal structure analysis, is not required. MODELING can convert an editable layered structure model into two-way traveltimes which can be compared with time-sections of Multi Channel Seismic (MCS) reflection data. Direct comparison between the structure model of wide-angle data with the reflection data will give the model more credibility. In addition, both PASTEUP and MODELING are efficient tools for handling a large dataset. These software tools help us develop more plausible lithospheric-scale structure models using wide-angle seismic data.

A Field Application of Crosshole Seismic Survey to the Detection of Tunnel (터널위치 규명을 위한 시추공 탄성파탐사 현장 응용)

  • 김중열;김유성
    • The Journal of Engineering Geology
    • /
    • v.7 no.1
    • /
    • pp.27-36
    • /
    • 1997
  • This paper shows that crosshole seismic survey allows to detect even a small size of underground tunnel (about 2m$\times$2m). Such a small tunnel (e.g. infiltration tunnel) causes diffraction, as the seismic wave propagates, which results in distinctive variations of traveltime and amplitude of the first arrivals. This effect (or tunnel effect) is a typical indicator for the existence of tunnel and thereby an information about the tunnel location can be obtained. It was shown that the tunnel effect illustrated by numerical modeling (FDM) could be also observed in field measurements. The depth and shape of the tunnel were determined by a simplified processing method based on the use of amplitude variation of the first arrivals. The estimated location of the tunnel was well matched to that of the real tunnel.

  • PDF

Resolution Limits of Cross-Well Seismic Imaging Using Full Waveform Inversion (전파형 역산을 이용한 시추공 영상의 분해능)

  • Cho, Chang-Soo;Lee, Hee-Il;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.1
    • /
    • pp.33-45
    • /
    • 2002
  • It was necessary to devise new techniques to overcome and enhance the resolution limits of traveltime tomography. Waveform inversion has been one of the methods for giving very high resolution result. High resolution image could be acquired because waveform inversion used not only phase but amplitude. But waveform inversion was much time consuming Job because forward and backward modeling was needed at each iteration step. Velocity-stress method was used for effective modeling. Resolution limits of imaging methods such as travel time inversion, acoustic and elastic waveform inversion were investigated with numerical models. it was investigated that Resolution limit of waveform inversion was similar tn resolution limit of migration derived by Schuster. Horizontal resolution limit could be improved with increased coverage by adding VSP data in cross hole that had insufficient coverage. Also, waveform inversion was applied to realistic models to evaluate applicability and using initial guess of travel time tomograms to reduce non-linearity of waveform inversion showed that the better reconstructed image could be acquired.