• Title/Summary/Keyword: trapezoidal patch

Search Result 9, Processing Time 0.019 seconds

Design of a Trapezoidal Microstrip Patch Antenna with Fractal Structure for Vehicle GPS (차량 GPS용 프랙털 구조의 사다리꼴 마이크로스트립 패치 안테나 설계)

  • Sung, Ha-Won;Son, Tae-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.3
    • /
    • pp.215-221
    • /
    • 2009
  • In this paper, a slotted trapezoidal microstrip fractal patch antenna is designed and fabricated for the vehicle GPS antenna. We designed air substrate patch antenna to obtain gain improvement by the elimination of dielectric loss. By applying fractal structure with crossed slot to trapezoidal patch, we obtained 42.5 % as much patch size as conventional triangular patch antenna. Measured bandwidth was 200 MHz on GPS band under VSWR 2:1 And gain was 4.31 dBi at resonant frequency that is 2$\sim$5 dB higher gain than conventional ceramic patch antenna on GPS band.

Design for Triple Band Patch Array Antenna with High Detection Ability

  • Kim, In-Hwan;Min, Kyeong-Sik
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.4
    • /
    • pp.214-223
    • /
    • 2013
  • This paper proposes a theoretical analysis of hidden device detection and a design of multiband circular polarization patch array antenna for non-linear junction detector system application. A good axial ratio of circular polarization patch antenna is realized by a new approach that employs inclined slots, two rectangular grooves and a truncated ground for the conventional antenna. A good axial ratio of the 1.5 dB lower is measured by having an asymmetric gap distance between the ground planes of the coplanar waveguide feeding structure. The common ground plane of the linear array has an optimum trapezoidal slot array to reduce the mutual coupling without increasing the distance between the radiators. The higher gain of about 1 dBi is realized by using the novel common ground structure. The measured return loss, gain, and axial ratio of the proposed single radiator, as well as the proposed array antennas, showed a good agreement with the simulated results.

Design of a Wideband Antipodal Vivaldi Antenna with an Asymmetric Parasitic Patch

  • Bang, Jihoon;Lee, Juneseok;Choi, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.1
    • /
    • pp.29-34
    • /
    • 2018
  • An antipodal Vivaldi antenna with a compact parasitic patch to overcome radiation performance degradations in the high-frequency band is proposed. For this purpose, a double asymmetric trapezoidal parasitic patch is designed and added to the aperture of an antipodal Vivaldi antenna. The patch is designed to efficiently focus the beam toward the end-fire direction at high frequencies by utilizing field coupling between the main radiating patch and the inserted parasitic patch. As a result, this technique considerably improves the gain and stability of radiation patterns at high frequencies. The proposed antenna has a peak gain greater than 9 dBi over the frequency range of 6-26.5 GHz.

Shark Antenna for Vehicle TDMB and GPS Receiver (TDMB 및 GPS 수신용 전장용 샤크 안테나)

  • Kim, Joo-Man;Son, Tae-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.6
    • /
    • pp.57-62
    • /
    • 2008
  • In this paper, a folded helical monopole antenna for TDMB receiving and a trapezoidal fractal microstrip patch antenna for GPS were designed and fabricated for the vehicle shark antenna. To minimize null which is generating toward antenna axis direction and to receive both vertical polarization and horizontal polarization for TDMB antenna, we fold 90 degree helical monopole element. GPS antenna to get wide bandwidth and gain improvement was designed an air substrate trapezoidal microstrip patch antenna. Fabricated TDMB and GPS antenna were measured for S11 and radiation pattern, and compared with a commercialized antenna. TDMB antenna shows 3 dB higher antenna gain and receiving signal strength than the commercial one. GPS antenna shows the gain of 4.31 dBi at the resonant frequency, which is $3{\sim}5\;dB$ higher gain over whole operating band and 135MHz wide bandwidth at 2:1 VSWR than the conventional ceramic antenna.

  • PDF

Analysis of the adhesive damage for different patch shapes in bonded composite repair of corroded aluminum plate

  • Mohamed, Berrahou;Bouiadjra, B. Bachir
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.123-132
    • /
    • 2016
  • Many military and commercial aging aircrafts flying beyond their design life may experience severe crack and corrosion damage, and thus lead to catastrophic failures. In this paper, were used in a finite element model to evaluate the effect of corrosion on the adhesive damage in bonded composite repair of aircraft structures. The damage zone theory was implemented in the finite element code in order to achieve this objective. In addition, the effect of the corrosion, on the repair efficiency. Four different patch shapes were chosen to analyze the adhesive damage: rectangular, trapezoidal, circular and elliptical. The modified damage zone theory was implemented in the FE code to evaluate the adhesive damage. The obtained results show that the adhesive damage localized on the level of corrosion and in the sides of patch, and the rectangular patch offers high safety it reduces considerably the risk of the adhesive failure.

Design of Wide-Band Trapezoidal Monopole Antennas with Back-Side Patch (후면 패치를 갖는 광대역 사다리꼴 모노폴 안테나의 설계)

  • Choi, Hwan-Gi;Choi, Hak-Keun;Lee, Hyoung-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.7
    • /
    • pp.631-638
    • /
    • 2009
  • In this paper, a wide-band monopole antenna for use in PCS/WDCMA/Wivro/S-DMB(1.750${\sim}$2.655 GHz) band is presented. The presented antenna is a trapezoidal monopole antenna which has back-side patch and improves the bandwidth. To confirm the wide-band characteristics and radiation pattern of presented antenna, the experimental antenna is fabricated and its radiation characteristics are measured, compared with calculated results. It is shown that the designed antenna has VSWR less than 1.5, gain over 2 dBi in 1.73${\sim}$3.48 GHz. The measured results show good agreement with calculated results. From the result, we confirm that the designed antenna can be used indoor antenna for PCS/WCDMA/WiBro/S-DMB.

CONTACT PRESSURE DISTRIBUTION OF RADIAL TIRE IN MOTION WITH CAMBER ANGLE

  • Kim, Seok-Nam;Kondo, Kyohei;Akasaka, Takashi
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.387-394
    • /
    • 2000
  • Theoretical and experimental study is conducted on the contact pressure distribution of a radial tire in motion under various camber angles. Tire construction is modelled by a spring bedded elastic ring, consisted of sidewall springs and a composite belt ring. The contact area is assumed to be a trapezoidal shape varying with camber angles and weighted load. The basic equation in a quasi-static form is derived for the deformation of a running belt with a constant velocity by the aid of Lagrange-Euler transformation. Galerkin's method and stepwise calculation are applied for solving the basic equation and the mechanical boundary condition along both sides of the contact belt part subjected to shearing forces transmitted from the sidewall spring. Experimental results on the contact pressure, measured by pressure sensors embedded in the surface of the drum tester, correspond well with the calculated ones for the test tire under various camber angles, running velocities and weighted loads. These results indicate that a buckling phenomenon of the contact belt in the widthwise direction occurs due to the effect of camber angle.

  • PDF

Design and Fabrication of the Antenna for Wibro and WLAN Communications Using CPWG Structure (CPWG 구조를 이용한 Wibro 및 WLAN 통신용 안테나 설계 및 제작)

  • Lee, Seung-Woo;Kim, Nam;Rhee, Seung-Yeop
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.10
    • /
    • pp.1086-1095
    • /
    • 2008
  • In this paper, we designed and fabricated the trapezoidal antenna using the CPWG structure for Wibro and WLAN communications. This antenna has broadband characteristics using the basic trapezoidal antenna, and an H-shaped parasitic patch is making an expansion of resonance bandwidth and bringing stability of impedance matching. Especially, CPWG structure is combined two kinds of the structure which of a monopole antenna and a coplanar waveguide antenna. They make up for the weak point of the CPW which is variation of impedance matching according to varying the gap or size of the feed line and the ground. The designed antenna has occurred resonances of which the band of 2.2 GHz to 4.6 GHz(70.5 %) below the return loss of -10 dB($VSWR{\leq}2$) obtained in measurement, and it has an omnidirectional radiation pattern of H-plane. In addition, the changes of impedance matching appear slightly caused by the effects of the ground plane and the feed line.

Active Shark Antenna for the Vehicle AM/FM/TDMB/GPS Receiver (자동차용 AM/FM/TDMB/GPS 통합 능동형 샤크 안테나)

  • Kim, Joo-Man;Son, Tae-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.698-705
    • /
    • 2010
  • A vehicle antenna for AM, FM, TDMB, GPS systems was designed and implemented. Omnidirectional AM antenna was designed by ferrite turn style antenna. For the FM and TDMB antenna, folded monopole antenna which helical is folded was applied. GPS antenna for the bandwidth achievement was designed by trapezoidal microstrip patch that has air substrate. Receiving signal strengths by the measurement were presented for the AM, FM and TDMB antenna. AM signal strength was -65.7 dBm, this strength is almost as same conventional pole antenna as -63.4 dBm. It can be replaced conventional pole or glass antenna by the studied antenna. Signal strengths for FM and TDMB were -55.66 and -43.50 dBm at center frequency, they are 5~10 dB higher than conventional antenna. Measurements of bandwidth and gain for the GPS antenna showed 135 MHz under VSWR 2 : 1 and 4.31 dBi, gains over GPS band were 3~5 dB higher than ceramic patch antenna.