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CONTACT PRESSURE DISTRIBUTION OF RADIAL TIRE IN
MOTION WITH CAMBER ANGLE
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ABSTRACT

Theoretical and experimental study is conducted on the contact pressure distribution of a radial tire in
motion under various camber angles. Tire construction is modelled by a spring bedded elastic ring, consisted
of sidewall springs and a composite belt ring. The contact area is assumed to be a trapezoidal shape varying
with camber angles and weighted load. The basic equation in a quasi-static form is derived for the deformation
of a running belt with a constant velocity by the aid of Lagrange-Euler transformation. Galerkin's method and
stepwise calculation are applied for solving the basic equation and the mechanical boundary condition along
both sides of the contact belt part subjected to shearing forces transmitted from the sidewall spring.

Experimental results on the contact pressure, measured by pressure sensors embedded in the surface of the
drum tester, correspond well with the calculated ones for the test tire under various camber angles, running
velocities and weighted loads.

These results indicate that a buckling phenomenon of the contact belt in the widthwise direction occurs

due to the effect of camber angle.

1 Introduction

Analysis on the contact deformation to the road-
way and the contact pressure distribution of a radial
tire in motion with camber angle has been an impor-
tant problem deeply related to the cornering charac-
teristics and the abrasion properties of tire. This ana-
lytical study is evident to conflict with the mathemat-
ical difficulties attributed to large deformation and
nonlinear properties of the tire contacting obliquely
to the roadway and therefore it has not yet been con-
ducted satisfactorily.

Recently, Kagami et al[2] analyzed the contact de-
formation of a radial tire with camber angles under
the static load in the vertical direction. Utilizing the
Bohms(1] theory for the contact-free part of the belt,
they solved approximately the two dimensional de-
formation of the contact belt by the use of Galerkin’s
method.

On the other hand, Shiobara et al[3] presented a

research paper on the contact deformation of a radial
tire in motion without camber angle. This lead to a
clear understanding for the contact pressure rise at
the leading edge of the contact area of a rotating ra-
dial tire, however did not consider also the non-linear
property of sidewall springs.

Then, we intend here to determine the contact
pressure distribution of a radial tire in motion with
cémber angles by extending and revising these two
papers mentioned above.

Introducing a new method of stepwise analysis
taken the nonlinearity of a sidewall spring into con-
sideration, and also simplifying the expressions for
membrane forces in the contact belt, we endeavored
to obtain the contact pressure distribution without so
much numerical calculations. We conducted further
an experimental study of the contact pressure dis-
tribution under various camber angles and running
velocities to verify predicted results.
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2 Contact-Free Belt

We denote the coordinate axes of the belt ring
in the widthwise, the circumferential and the inward
normal directions by x,y and z, and displacement by
u,v and w respectively, and further the twist angle
around y axis by ¢(y), as shown in Fig.1, where 6, sig-
nifies a half central angle contained by the arc length
of the contact belt part.

An element of the belt ring is supported by side-
wall spring systems in the radial, lateral and tangen-
tial directions of which spring constants are denoted
by K., K, and K, respectively,[4].

Considering that the belt element is subjected to
the inflation pressure p, the extensional force in the y
direction Ny, due to the torque T, the in-plane bend-
ing moment M, the out-of-plane bending moment
M, transverse shearing force F, and inertia forces
@g,a, and a, shown in Fig.2 and assuming that the
belt ring is in-extensible, we obtain the following equi-
librium equations for the steady state case.

i) Equilibrium condition in z direction yields

v(® 4 a;v@ + av® 4 azv =0 (1)
w=1v (2)

where prime(’) implies the differentiation with re-
spect to # and the coefficients are given by

N A2 4102
ag = 2_N,,a b+pa Q2
Dl D:
e . a2 4,02
g = 1+ ra” _ Nya®h  6pa”b02
2 D, D
4102 4
_ pa’bf) Kea
a3 = Do D. (3

where D, denotes the out-of-plane bending stiffness
of the belt, and Eq(2) means the in-extensibility con-
dition of the belt.

ii) Equilibrium condition in z direction yields

u® 4 6:uP + 6u+ 636D +6,6=0  (4)

5 = _N,,a2 _r pa’b?
roE D. D, D,
K,a4
& =
2 D,
al’
b3 = —
3 a+ D,
4
b
6 = -2 ®)

and further D, and I' signify the in-plane bending
and the torsional stiffness respectively.
iil) Equilibrium condition in y direction yields

v +71¢" +7246=0 (6)
(I' - 1a202)a
71 T+ D,
(D=4 Rra262/4)a
2 = TTF.p )

and [ denotes the moment of inertia for the unit
length of the belt.
In deriving these equilibrium equations, we used
the Lagrange-Euler trasformations as
6_2 = Q2_(?2_
ot2 062

for the steady state deformation

(8)

3 Difference Equations and
Boundary Conditions

Since the radial spring constant K, has a tendency
of steep decent as the increase of inward deflection as
well known[4], then we intend to conduct a stepwise
analysis[5] for displacement functions of u,v,w and
¢. Then, we transform the differential equations of

Eqs(1), (4) and (6) to finite difference equations.
Eq(1) is transformed to the following difference
equation, in j-th loading case.

viyz +B1viya +B2vipy +B83vi +Bgvi_1 +B5viz2+vi3=0 (9

where superscript j is omitted, and the coefficents
are listed below.

B = —6+a1A6?

B2 = 15-4m Ab? + az,—A04

Bz = —20+6a108% — 209, A0% + azAG®

Bas = 15-4da;z Ag? + o2; At

Bs = —6+0176° (10)

Boundary conditions for this difference equation are
described below.
(a) Symmetry condition at the apex :

Unt1 — 2Up + VUp—q1 =0 (11)
(b)Tangential rotation at the contact belt end :

Vit + (=2 + 26%)v; + vj—; = —jand? (12)



(¢) Out-of-plane bending moment at the contact belt
end :

Vjty2— (2 —A92)Uj+1 + (2— A02)vj_1 —Vj2 =0 (13)
(d) Horizontal displacement at the contact belt end :

— vj415in(jAB) + 2A0v; cos(AB) + v;_1 sin(jA) = 2;3A6%
(14)

Eqgs(4) and (6) are replaced by the following differ-

ence equations respectively

vip2triuipHrvouitrviui o1 a2+ A1 di 1 H A2+ g =0
(15)

Uipl = 2ui + U1+ M1dip1 + Vb + 1621 =0 (16)

where

vy = 61A92 —4

vz = 6—26,06° + 62A0%

Al = 53A92

A2 = 6408% - 263007

F o= mARf -2y (17)

Boundary conditions for this difference equation sys-
tem are described as follows.

(a’) Symmetry conditions at the apex :
Un4l = Un-1, Up42 = Up-2 (18)

Gnt1 =Pn-1, Pni2= Pn_2 (19)

however, it is noted that u,, # 0 and ¢, u, # 0.
(b') Torsional angle at the contact belt end :

o; = —a (20)

(¢') Lateral displacement at the contact belt end

u; = (Z; + ) tana (21)

(d') In-plane shearing force at the contact end :

PO B 2 Bt et Tt S e S e B
z
243 A3 222 Ao
n
Pit1 T -1 i1 w51
+r - = Ksalo ; (22
{ 2426 2a3A¢ o Zu' @2

i=j

The in-plane bending moment M,, and the torsional
moment T, at = 6y are obtained as

_ Dam 1A 2
M=~ X [¢j+1 + {—2+ ;Ae (2~ a)} @5 +¢,~_1} 23)

1
Sand {¢j+1 = ¢i-1— (g1 — ’uj—l)} (24)

4 Contact Deformation and
Contact Shear

The contact area of the belt behaves like a quasi-
trapezoidal shape slightly bent in the camber direc-
tion as illustrated in Fig.3.

The taper angle 8 of the trapezoidal contact area

becomes
== _ == =(@. _ D,
tan 3 = P =P a(f1 — 03) (25)
b b
Otherwisely
tana =~ é%(gf -y = tanﬁgl——;g2 (26)

Then, we have

8 =tan™! (ta;;a> , (90 = Mﬁ) (27)

where 6y implies a half central angle at the contact
end along the middle line of the belt.

The total deflection 6, in the vertical direction(Z)
is represented by

62 (Z1+¢;) cosa = {a(l — cosbq) + {1} cosar (28)

where Z; denotes the geometrical height in the verti-
cal (Z) direction at the contact end of the front belt
periphery, while ¢; denotes the elastic displacement
in Z direction referred to [5].

Kagami et al[2] assumed that the in-plane shapes
of the deformed belt and the tread rubber surface to
be both slightly bent trapezoids as illustrated in Fig.4
and derived the following representations for the max-
imum relative movement, A, and the curvature of the
front side of the contact belt 1/R;.

asin* 6,

" 4 cosb

sin o cos o (29)

. . 2 .

—}%1« = 51204 <1 - %%S—gllcosa) o~ % (30)
Noting that the relative movement between these
quasi-trapezoids vanishes along the common oblique
sides, we can represent the relative movement, AU,

as
2

AU = A (1 - §—2> (31)

-389-



where F(z) is a geometrical function for a straight
oblique side of the quasi-trapezoid as

1 +72 ”_2;_”11 (#1 = asin6, o = asinfy) (32)

y(z) = —2——+

Then, the contact shear, S;, is given by
G y?
=—Al1-%
Sz T (1 = ) (33)

where H is the thickness of tread rubber.

The contact shear in the circumferential direction
of y, Sy, is inherent to the bending deformation and
simply represented as

S, =Go (34)

Then, the camber thrust, @, can be given by

/ / RCESEE

G sin?
12H

i

Qz

(sm 01 + sin 02) sin 2a (35)

5 Membrane Forces in the

Contact Belt

Initially the whole belt has been subjected to the
following initial membrane forces, N, and Ny, in the
widthwise and the circumferential directions respec-
tively, due to the inflation pressure p

~ _ P(rp® —rc?)

Nz 2r D (36)

2 _
Ny =prp (1 - (TD—TLz) cot ¢D> (37)
’I'Db

where r¢,rp are radius coordinates of the turning
point, C, and the sidewall end, D, respectively and
¢p denotes the tangential angle at D of a tire cross
section(cf. Fig.1).

We intend here to obtain membrane forces, N, N,
and Ny, of the contact belt in the contact state, as
shown in Fig.5.

For simplicity, neglecting the additional terms
transmitted from the contact-free belt, we assume
here as

N, =N, (38)

Ny = —Ny + Ngz (39)

where Npz signifies the bending membrane force,
with the notation of

h
Np = % (40)

In the above representations, & is the thickness of the
belt, E,, is the orthotropic modulus in y direction and
Ry is the in-plane radius of curvature of the bent belt,
which are represented by

E, = En, (1 — cot? ap + cot? ag) (41)
—1_ _ sin o ( 42)
Ry a

where E,, implies modulus of rubber and og denotes
bias angle of the composite belt.

Shearing membrane force, Ng,, can be obtained
from the equilibrium equation and Eq(33)

ON;  ONg,
— = -5, 43
Jz + dy S (43)
as follows
7]
Ngy = - Sz dy
-y
GA 3
= - Zfy-L 44
i (v %) “

which satisfies the condition of N, = 0 along y = 0.

6 Deflection of Contact Belt

We establish first the standard flat deflection sur-
face, wp(z,y), which is inclined slightly to the road-
way plane in the front side direction of the contact
trapezoid, and then consider an additional deflection,
w(z,y), which is to be superimposed upon wy(z, ).

We can put

wo(z,y) = ~wy — wex (45)

where w; implies a uniform deflection, while w, means
a rotation angle around y axis.

The total deflection w*(z,y) is thus represented
by

w*(x: y) = ’U)o(fl:, y) + w(zay) (46)
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Referring to Fig.6, we have the following equilibrium
equation for W(z,y)

Dxz®,rzae + 2Dzy + 2Dss )W, zayy + Dyy ¥, yyyy

==p~pV?B,yy + 9+ NaWax + NyT,yy +2Nayi,oy (47)
where Dy, Dy, Dy, and Dy, are bending and tor-
sional stiffnesses of an orthotropic plate correspond-
ing to the composite belt structure, V signifies the

velocity of contact belt in motion, and ¢ denotes the
contact pressure represented by

9(z,y) = ~Kmw*(z,y) + Cp, VI, (48)

with the use of spring constant, K,,, and visco-elastic
coeflicient, C,,,, of the tread rubber, together with
Lagrange-Euler transformation.

The boundary conditions for tranverse shearing
force, Q,1, along x=-b/2 and Q,2 along x=b/2 are
given respectively by

at T = —0/2
(Day +2D, )0 gy + Dot 00z = —3 Ko (661 (49)
atz =b/2

— —_ 1-o
(Day + 2Das)w2,:yy + DaaW2 g2y = ‘2*Kr(§2)€2 (50)

where ¢ and & dencte the deflections of sidewall
spring along x=-b/2 and x=b/2 respectively, repre-
sented as

_ 1 _
&) = 21— Z+(,+W  cosa ~ 5(;(?%*?/2)4‘41 (51)

_ 1 _
&) = Zo—Z+{,+Wacos o —23(17%—1/2)+C2 (52)

by neglecting the terms of W; cosa(i = 1,2), and ref-
ferring to Fig.6, J, and ¥, are given by

b
Y = c+§tanﬁ
b
Ty = C—Etanﬂ, (¢ = abp) (53)

The boundary conditions for out-of-plane bending
moment My along z = —b/2 and M,, along z = b/2,
being both assumed to vanish, are given respectively
by

at = —b/2

Dy e + DeyWi 4y =0 (54)
at z=>0/2

Doy gz + DypyWa gy =0 (55)

7 Determination of w; and w,

Quantities of w; and ws given in Eq(45), predict-
ing the standard plane of deflection, are determined
from the equilibrium conditions concerning the ver-
tical load W and the torsional moment 7" around y
axis at the contact end(cf. Fig.7).

The vertical load W is described in two ways.

as
8/2 ¥ /2 ¥
W:/ / qdccdy:K,,./ f (w1 + wex — W) dr dy
-b/2J -5 —b/2J—y
and

(56)

¥ b/2

2pbe + 2F + pV? / f Wy dz dy
~y7 J—bs2
5 72‘;

L [T 1 =
+‘2- ) K161 dy + 2 ) K282 dy (57)
5 -

where Eqs(56) and (57) mean the downward and the
upward total load W.

w =

By neglecting @ in the first integral of Eq(56),
because of being small compared with w; and see-
ing that the second integral vanishes when %W(x,y) is
symmetric with respect to y, we have

1
W= Ky, <2w1bc - gwgb3 tan ﬂ) (58)

Then, neglecting the third term integral on the right-
hand side of Eq(57), we have

W =

— 13
2pbe + 2F + K,o1(£1) ((y:;) + 2?1?1)

= 3
+Kr2(€2) (“’32; +2Eﬁz) (59)

Elimination W from Eqgs(58) and (59) gives an
equation for wy and wy.
Eq(59) is used to calculate the vertical load , W,

in the j-th step.

As shown in Fig.7, equilibrium condition for the
torsional moment around y axis attributed to the
inflation pressure, p, reaction forces from the side-
wall spring and the tread rubber spring and torque T
transmitted from the contact-free belt, which is given
by Eq(24), is represented as

T+gcosa{/ E(sl)dy-/ E(ez)dy}
.-.7 —_

¥ /2 b/2
+Km/ / zwo dzdy — p / z dz dy = (60)
-5 J —b/2 -y J—-b/2

which provides another equation for wq and ws.

2|
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8 Galerkin’s Method

Additional deflection W(x, y), included in the fun-
damental Eq(47), could be given by

B(z,y) = f(2)(F(z)* - %)

which satisfies the boundary conditions(clamped

(61)

supported) along the oblique lines of the contact
patch, y = £3(x) :

W=0, W,=0

(62)
where f(z) put fifth polynominal to z, as

f(2) = ag + a1z + a27? + a3z + agxt + as® (63)

Considering Eqs(38), (39) and (44), together with Eq
(48), we can rewrite Eq(47) as follows

DooW zxz + 2(Day + 2Dss)W z2yy + Dyy W, yyyy

= —p+Km(Ny = pV2 + Np2)Tpy + C Vi,

+N2W, 2z + 2NzyW,zy (64)

In order to determine six constants of ag, a1, a2, as, a4
and a5 including in Eq(63) as satisfying Eq(64) and
four boundary conditions of Egs(49), (50), (54) and
(55), it is convenient to use the Galerkin’s method.
Then, two weight functions of p; (z,y) and pa(z, y)
described below are adopted for this purpose.

pi(z,y) = [F(z)? — y2)? (65)

pa(z,y) = 2(Y(2)* ~ ¢*)? (66)

Applying the weight function of p;(x,y) and pa(z, )
for Eq(64) and p;(z,y) for four boundary conditions
Eqs(50), (51), (54) and (55) respectively, we have the
following six equations.

b/2 7
| [ eevm@paa=0 @
—b/2J -5
b/2 7
/ / _e(z,y)p(z,y)dydc =0  (68)
—-b/2J-y .
[ a@omena=o =12 (@)
~Y;
[ aGun@na=o =12 @)

where

&(2,9) = Daa® 222z + 2(Dzy + 2Dss)W,00yy + Dyy B yyyy

+P+ oVZB yy — 9 — NaWoa — Ny gy — 2Nay oy (71)

(Day +2D,5)Ws,zyy + DzaWi,zzx

45560 { oo (@ - ?) +6 feosa ()

e =

€2; = Dzz'wi,zz + Dzywt',vy (73)

9 Comparision of Calculated
and Experimental Results

Experimental study was conducted to verify the
calculated results for the same passenger radial tire,
175SR 14, as that adopted as the numerical example.

Fig.8 gives the relationship between vertical load
and the deflection of the front side. we cann’t use
that’s relationship when load is small, because two
side shoulders don’t touched on roadway by camber
angle.

Fig.9 shows the distribution of circumferential
membrane force IV, in the contact belt, under the
vertical load W = 4K N, camber angle o = 1° and
velocity V' = Okm/h.

Membrane force N, in the circumferential direc-
tion happens to be compressive along the front side
of the contact belt, attributed to its in-plane bending
deformation of the belt with camber angle .

Figures.10, 11 illustrate the contact pressure dis-
tribution in the circumferential direction, at x=-15,
-41.5mm apart from the crown center in the front di-
rection, when p=0.18MPa, W=4KN, V=10,60km/h
and a = 2°.

As shown in Figures.10, 11, the partial floating-up
phenomenon of the contact belt ,causing the contact
pressure to be zero, might take place due to camber
angle without the velocity and at the crown center
parts in the front side direction.

-392-



10 Conclusion 5. Membrane force NN, in the circumferential di-
rection happens to be compressive along the

front side of the contact belt, attributed to its
1. Spring effect of the whole tire in the vertical di- in-plane bending deformation of the belt with

we obtained the following concluding remarks.

rection increases slightly with the increase the
running velocity, V', and decreases with the in-
crease of camber angle, a.

. Camber thrust Q. increases steeply with the
increase of the vertical load W, and increases
linearly with the increase of the camber angle,
«, while it increases slightly with the increase
of the velocity, V.

. Contact pressure distribution behaves like a
deep concave along the crown center, and like a
shallow convex curve both along front and rear
sides of the trapezoidal contact area.

The predicted distributions of the contact pres-
sure are verified by the experimental results.

. It is obserbed that the contact pressure rises
more along the trailing edge than along the
leading edge due to the viscosity effect in high
temperature.

Fig.t Coordinate axes of x,y and z,and displacement
of w,v and w establiuhied along the belt

Fig.3 The oblique glde of F,5, of a trapezoidal contact patch

camber angle.

6. The partial floating-up phenomenon of the con-
tact belt might take place, causing the contact
pressure to be zero, when the camber angle
grows to some extent.
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