• Title/Summary/Keyword: transverse vibration method

Search Result 269, Processing Time 0.022 seconds

Boundary Control of Container Cranes as an Axially Moving String System (축방향으로 이동하는 현의 경계제어)

  • Park, Hahn;Hong, Keum-Shik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.387-392
    • /
    • 2004
  • The control objectives in this paper are to move the gantry of a container crane to its target position and to suppress the transverse vibration of the payload. The crane system is modeled as an axially moving string equation, in which control inputs are applied at both ends, through the gantry and the payload. The dynamics of the moving string are derived using Hamilton's principle for systems with changing mass. The Lyapunov function method is used in deriving a boundary control law, in which the Lyapunov function candidate is introduced from the total mechanical energy of the system. The performance of the proposed control law is compared with other two control algorithms available in the literature. Experimental results are given.

  • PDF

Analysis of the Magnetic Force and Torque of a Rotatory Two-Phase Transverse Flux Machine (회전형 이상 횡자속형 전동기에서 발생하는 자기력 및 토크 해석)

  • Park, Nam-Ki;Chang, Jung-Hwan;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.829-835
    • /
    • 2006
  • Rotatory two-phase transverse flux machine(TFM) is a relatively new type of motor with high power density, high torque, and low speed in comparison to conventional electrical motors. However, it has some shortcomings,.i.e. complex construction and high possibility of the magnetically induced vibration due to its inherent structure. This paper investigates the characteristics of the magnetic force and the torque in the rotatory two-phase TFM by using the 3-D finite element method and the spectral analysis. This research shows that the average torque decreases and that the torque ripple increases as the phase delay increases. It also shows that the unbalanced magnetic force is one of the dominant excitation forces in this machine. And it proposes a new topology of rotatory two-phase TFM to eliminate the unbalanced magnetic force.

  • PDF

A Study on Material Damping of the $0^0&90^0$ Laminated Composite Sandwich Cantilever Beam inserted with Viscoelastic layer (점탄성층을 삽입한 $0^0&90^0$ 섬유강화 복합재료의 감쇠계수에 대한 연구)

  • Yim, Jong-Hee;Seo, Yun-Jong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.345-348
    • /
    • 2004
  • In this paper it is to establish a comprehensive model for predicting damping in sandwich Laminated composites on the basis of strain energy method. In this model, the effect of transverse shear on the material damping has been considered with in-plane stresses. Results showed that the viscoelastic core thickness in the sandwich beam and the Length of a beam have a high impact on the material damping. The transverse shear appears to be highly influenced by the damping behavior in $0^0$ laminated sandwiched composites. However, it is Little influenced by that in $90^0$ laminated sandwiched composites.

  • PDF

Improvement of Torque Characteristics of a Rotatory Two-Phase Transverse Flux Machine Optimizing the shape of Rotor Pole (자석 형상 최적화를 통한 축방향 이상 횡자속형 전동기의 토크 특성 향상에 관한 연구)

  • Ahn, Hee-Tae;Jang, Gun-Hee;Chang, Jung-Hwan;Chung, Shi-Uk;Kang, Do-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.286-292
    • /
    • 2008
  • Transverse flux machine (TFM) has been developed to drive a machine of large input power at low-speed. However, it has complicated structure and large torque ripple due to its inherent structure In this paper the characteristics of torque of a rotatory two-phase TFM are analyzed by using the 3-dimensional finite to element method and optimal design. This research shows that one of the effective design variables is the skew angle of permanent magnet. The skew angles of permanent magnet are optimized by using a Progressive Quadratic Response Surface Method (PQRSM). It also shows that the proposed optimal skew magnet not only increases average torque but also decreases torque ripple of a rotatory two-phase TFM.

  • PDF

Influence of Two Moving Masses on Dynamic Behavior of a Simple Beam (두 이동질량이 단순보의 동특성에 미치는 영향)

  • Yoon, H.I.;Choi, C.S.;Im, S.H.
    • Journal of Power System Engineering
    • /
    • v.4 no.4
    • /
    • pp.70-77
    • /
    • 2000
  • On the dynamic behavior of a simple beam the influences of the velocities and distance of two moving masses have been studied by numerical method. The instant amplitude of a simple beam is calculated and analyzed for each position of the moving masses represented by the time functions. As increasing the velocties of two moving masses on the simple beam, the amplitude of the transverse vibration of the simple beam is decreased and the frequency of the transverse vibration of the simple beam is increased. As the distance between two moving masses increase, the transverse displacement of the simple beam is decrease. The simple beam is very stable in second mode at $\bar{a}=0.5$ and in third mode at $\bar{a}=0.3$.

  • PDF

Behavior Analysis and Empirical Relation for a Flexible Disk with High Speed Rotation (고속회전 유연디스크의 거동해석과 경험식)

  • Lee, Ho-Ryul;Rhim, Yoon-Chul
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.4
    • /
    • pp.245-250
    • /
    • 2006
  • Organizations such as broadcasting stations and libraries which deal with huge amount of information require high-capacity storage systems for archiving their materials and information. It is necessary and urgent for the storage people to develop a compact, high capacity, and low-cost data storage systems. Even though the Blue-ray technology is commercialized and now it is on the market, demand for the compact and low-cost system is still increasing. A flexible disk system has been introduced recently to satisfy above mentioned requirements. The system uses multiple of thin disks and is expected to achieve technical requirements. However, decreasing the disk thickness makes it difficult to read and write data because it decreases the disk rigidity so that the transverse vibration of the rotating disk increases easily due to both the interaction with surrounding air and the vibration characteristics of thin flexible disk itself. In this study, flat-type stabilizer is proposed to suppress the transverse vibration of a $95{\mu}m$-thick polycarbonate disk. Characteristics of disk vibration have been studied through the results of numerical analysis from the fluid mechanics point of view. Numerical simulation is verified through the experiment by measuring the gap between the rotating disk and the stationary flat stabilizer. The axial deflections of the disk are computed for various rotating speeds and reference gap sizes and then a method of regression is applied to those data. As a result, an empirical relation is proposed for the steady deformation shape of the rotating disk.

  • PDF

Vibration Analysis of Annular Plate Combined Cylindrical Shells Considering Additional Deformations (추가변형을 고려한 환원판 결합 원통셸의 진동해석)

  • Kim, Young-Wann;Chung, Kang
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.551-556
    • /
    • 2004
  • The theoretical method is developed to investigate the vibration characteristics of the combined cylindrical shells with an annular plate joined to the shell at any arbitrary axial position. The structural rotational coupling between shell and plate is simulated using the rotational artificial spring. For the translational coupling, the continuity conditions for the displacements of shell and plate are used. For the uncoupled annular plate, the transverse motion is considered and the in-plane motions are not. And the additional transverse and in-plane motions of the coupled annular plate by shell deformation are considered in analysis. Theoretical formulations are based on Love's thin shell theory. The frequency equation of the combined shell with an annular plate is derived using the Rayleigh-Ritz approach. The effect of inner-to-outer radius ratio, axial position and thickness of annular plate on vibration characteristics of combined cylindrical shells is studied. To demonstrate the validity of present theoretical method, the finite element analysis is performed.

  • PDF

Influence of Boundary Stress Singularities on the Vibration of Clamped and Simply Supported Sectorial Plates With Various Radial Edge Conditions (다양한 방사연단 조건을 갖는 고정 및 단순지지 부채꼴형 평판 진동에 대한 경계응력특이도의 영향)

  • Kim, Joo-Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.601-613
    • /
    • 1998
  • This paper reports the first-of-its-kind free vibration solutions for sectorial plates having re-entrant corners causing stress singularities when the circular edge is either clamped or simply supported. The Ritz method is employed with two sets of admissible functions assumed for the transverse vibratory displacements. Accurate frequencies and normalized contours of the transverse vibratory displacement are presented for the spectra of sector angles.

  • PDF

Calculation of the coupled free, transverse vibrations of the multi-supported shaft system by transfer matrix method (전달매트릭스법에 의한 다점지지축계의 연성자유횡진동계산에 관한 연구)

  • 안시영;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.49-63
    • /
    • 1983
  • Coupled transverse shaft vibrations have become the target of great concern in high powered ships such as container ships. Due to increasing ship's dimensions and high propulsive power, resonance frequencies of the propeller shaft system tend to decrease and can appear in some cases within the operating speed range of engine. In this connection, the coupled free transverse vibrations of shaft system in two planes are theoretically investigated. This shaft system carries a number of discs and is flexibly supported by a number of bearing stiffness are considered for the calculation. Transfer matrix method is applied to calculate the shaft responses in both planes. A digital computer program is developed to calculate the shaft responses of the coupled transverse vibrations in two planes. An experimental model shaft system is made. It is composed of a disc, shafts, ball bearings thrust bearings and flexible bearing supports. The shaft system is excited by an electrical magnet, and shaft vibration responses in two planes are measured with the strain gage system. From these measurements, the natural frequencies of the shaft system in both planes are found out. The developed program is also used to calculate the shaft vibration responses of experimental model shaft system. From the results of these calculations, the natural frequencies of shaft system in two planes are derived. Theoretical predictions of model shaft natural frequencies show good agreements with its esperimental measurements.

  • PDF

Modeling and Optimal Control with Piezoceramic Actuators for Transverse Vibration Reduction of Beam under a Traveling Mass (이동질량에 의한 보의 횡진동저감을 위한 모델링 및 압전작동기를 이용한 최적제어)

  • Sung, Yoon-Gyeoung;Ryu, Bong-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.126-132
    • /
    • 1999
  • The paper presents the modeling and optimal control for the reduction of transverse vibration of simply supported beam under a moving mass. The equations of motion are derived by using assumed mode method. The coriolis and centripetal accelerations are accommodated in the equations of motion to account for the dynamic effect of the traveling mass. In order to reduce the transverse vibration of the beam, an optimal controller with full state feedback is designed based on the linearized equations of motion. The optimal actuator locations are determined with the evaluation of an optimal cost functional defined by the worst initial condition with the trade-off of controlled mode performance. Numerical simulations are performed with respect to various velocities and different traveling masses. Even if the velocity of the traveling mass reaches to the critical speed which can cause the resonance of the beam, the controller with two piezoelectric actuators shows the excellent performance under severe time-varying disturbances of the system.

  • PDF