• 제목/요약/키워드: transverse magnetic field

Search Result 134, Processing Time 0.034 seconds

Vibration Analysis of Composite Cylindrical Shells Subjected to Electromagnetic and Thermal Fields with Different Boundary Conditions (경계조건에 따른 자기장 및 열하중을 받는 복합재료 원통셸의 진동해석)

  • Park, Sang-Yun;Kim, Sung-Kyun;Choi, Jong-Woon;Song, Ohseop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.653-660
    • /
    • 2012
  • In this paper free vibration analysis of symmetric and cross-ply elastic laminated shells based on FSDT with two different boundary conditions(C-C, S-S) was performed through discretization of equations of motion and boundary condition. Model of laminated composite cylindrical shells subjected to a combination of magnetic and thermal fields is developed via Hamilton's variational principle. These coupled equations of motion are based on the electromagnetic equations (Faraday, Ampere, Ohm, and Lorenz equations) and thermal equations which are involved in constitutive equations. Variations of dynamic characteristics of composite shells with applied magnetic field, temperature gradient, and stacking sequence for each boundary conditions are investigated and pertinent conclusions are derived.

  • PDF

Frequency Stabilization of a 633 nm He-Ne Laser In a Transerse Magnetic Field (횡자장하에서 633nm He-Ne 레이저의 주파수 안정화)

  • 엄태봉
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.493-495
    • /
    • 1993
  • The frequency of the 633 nm internal mirror He-Ne laser has been stabilized by using the beat frequency and the intensity difference between two Zeeman split components in a transverse magnetic field. The frequency stability and the frequency temperature coefficient for the beat frequency method was $7.0{\times}10^{-11}$ and $170 kHz/^{\circ}C$, respectively, and those for the intensity difference was $1.1{\times}10^{-9}$ and $1.8 MHz/^{\circ}C$, respectively.

  • PDF

The Influence of Transverse Magnetic Field for Shortening DC Arc Time (직류 아크 소호 시간을 단축시키는 직교자계의 영향)

  • Lee, Eun-Woong;Cho, Hyun-Kil
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.3
    • /
    • pp.146-154
    • /
    • 2006
  • We derived a theory of increasing electromagnetic force which acts on arc column for reducing arcing time between electric contacts. A simulation method of arc velocity is presented by calculating blowout force using 3D FEM and drag force acting on arc column. This paper proposes 3 types arc extinguish chamber of different flux path and presents the specific electromagnetic force and arc velocity of each model by the analysis. The result of analysis and experimental proposes the prediction method of arc time when all conditions are same except external magnetic field.

Improved ILDC Formulation for Very Thin Gap/Crack (아주 가는 균열의 산란 해석을 위한 향상된 ILDC 공식)

  • Lee, Hyunsoo;Koh, Il-Suek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.9
    • /
    • pp.938-943
    • /
    • 2014
  • The scattered field by a gap/crack on the PEC surface of a large object having low-observable RCS cannot be negligible, but may not be analyzed by the known high-frequency technique. If the electrical width of the crack is very small, the crack can be modeled by an impedance strip, whose scattering formulation can be analytically obtained based on a low-frequency approximation. The scattering solution is formulated for the 2D strip and TE(Transverse Electric) or TM(Transverse Magnetic) wave incidence, from which a 3D ILDC(Incremental Length Diffraction Coefficients) can be extracted. Using the ILDC formulation, the scattering by any arbitrary shaped crack can be estimated. In this paper, an improved ILDC equations are proposed, which combine the known TE and TM solutions. The improved accuracy of the proposed solution is numerically verified.

Analysis of TE Scattering by a Resistive Strip Grating Over a Grounded Dielectric Layer Using Point Matching Method (Point Matching Method를 이용한 접지된 유전체층 위의 저항띠 격자구조에 의한 TE 산란 해석)

  • Yoon, Uei-Joong
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.371-375
    • /
    • 2014
  • In this paper, the solutions of TE(transverse electric) scattering problems by a resistive strip grating over a grounded dielectric layer are analyzed by applying the PMM(point matching method) known as a numerical method of electromagnetic fileld. The boundary conditions are applied to obtain the unknown field coefficients and the resistive boundary condition is used for the relationship between the tangential magnetic field and the induced surface current density on the resistive strip. The induced surface current density of resistive strip is obtained by difference of the up and down of the magnetic field in two boundary areas of the resistive strip. The numerical results for reflected power of zeroth order mode analyzed by according as the resistivity, the width and spacing of resistive strip, the relative permittivity and thickness of dielectric layer, and incident angles. The numerical results shown in good agreement compared to those of the existing papers using FGMM(fourier galerkin moment method).

An Investigation of Higher Order Modes in Widthwise in Parallel Plate Waveguide (평행평판 도파관에서 너비 방향으로 발생하는 고차 모드에 관한 연구)

  • Cho, Gyu-Yeong;Jo, Hyun-Dong;Park, Wee-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.6
    • /
    • pp.731-739
    • /
    • 2012
  • Transverse electric modes in parallel plate waveguide of which cut-off frequency is much lower than that of $TE_1$ and $TM_1$ mode generally known as the lowest higher order mode are investigated. Electric and magnetic field components of the modes are evaluated with the assumption that boundaries at both sides are perfect magnetic conductor. The existence of these modes are verified by simulation and experimental measurement of parallel plate waveguide cavity. Changed characteristics from the fact that the boundaries are imperfect are studied.

Review of progress in electromechanical properties of REBCO coated conductors for electric device applications

  • Shin, Hyung-Seop;Dedicatoria, Marlon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.7-16
    • /
    • 2014
  • Rare-earth barium copper oxide (REBCO) coated conductor (CC) tapes have already been commercialized but still possess some issues in terms of manufacturing cost, anisotropic in-field performance, $I_c$ response to mechanical loads such as delamination, homogeneity of current transport property, and production length. Development on improving its performance properties to meet the needs in practical device applications is underway and simplification of the tape's architecture and manufacturing process are also being considered to enhance the performance-cost ratio. As compared to low temperature superconductors (LTS), high temperature superconductor (HTS) REBCO CC tapes provide a much wider range of operating temperature and a higher critical current density at 4.2 K making it more attractive in magnet and coil applications. The superior properties of the REBCO CC tapes under magnetic field have led to the development of superconducting magnets capable of producing field way above 23.5 T. In order to achieve its optimum performance, the electromechanical properties under different deformation modes and magnetic field should be evaluated for practical device design. This paper gives an overview of the effects of mechanical stress/strain on $I_c$ in HTS CC tapes due to uniaxial tension, bending deformation, transverse load, and including the electrical performance of a CC tape joint which were performed by our group at ANU in the last decade.

[ $^{11}B$ ] Nuclear Magnetic Resonance Study of Spin Structures in Terbium Tetraboride

  • Mean, B.J.;Kang, K.H.;Kim, J.H.;Hyun, I.N.;Lee, Moo-Hee;Cho, B.K.
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.10 no.2
    • /
    • pp.197-202
    • /
    • 2006
  • [ $^{11}B$ ] nuclear magnetic resonance (NMR) measurements were performed on the single crystals of $TbB_4$ to investigate local electronic structure and 4f spin dynamics. $^{11}B$ NMR spectrum, Knight shift, spin-lattice and spin-spin relaxation rates were measured down to 4K at 8T. $^{11}B$ NMR shift and linewidth are huge and strongly temperature dependent due to the 4f moments. In addition, both are proportional to magnetic susceptibility, indicating that the hyperfine field at the boron site originates from the 4f spins of Tb. Below $T_N$, the single broad resonance peak of $^{11}B$ NMR splits into several peaks reflecting the local magnetic fields due to antiferromagnetic spin arrangements. The longitudinal and the transverse relaxation rates, $1/T_1\;and\;1/T_2$, independent of temperature above $T_N$, decreases tremendously confirming huge suppression of spin fluctuation below $T_N$.

  • PDF

Oxygen Profiles and Precipitation Behavior in CZ Silicon Crystals Grown in A Transverse Magnetic Field (수평자장 하에서 성장된 CZ 실리콘 단결정의 산소 분포 및 석출거동)

  • Kim, Kyeong-Min;Choi, Kwang-Su;P. Smetana;T.H. Strudwick;Lee, Mun-Hui
    • Korean Journal of Materials Research
    • /
    • v.2 no.2
    • /
    • pp.119-125
    • /
    • 1992
  • Oxygen segregation in horizontal-magnetic-field-applied Czochralski (HMCZ) silicon crystals has been studied as a function of magnetic field strength (B) and crucible rotation rate (C). Along the axis of 57mm din. <100> crystals grown under B=2, 3, 4 kG and C=4-15rpm, the oxygen distribution was usually saw-tooth shaped and fluctuated unevenly. Compared to the conventional CZ method, this result seems to indicate that the horizontal magnetic field, at levels used in the present experiment, had a destabilizing influence on oxygen transport to the growth interface. On the other hand, as C increased, the oxygen fluctuation lessened, and [0] increased overall. At B=2 kG, an oxygen profile in a level of 27-36 ppma was achieved by a programmed ramp of C. Oxygen precipitation behavior of the HMCZ silicon during a simulated device manufacturing process was compared and found to be inferior to that of typical CZ silicon. The uneven oxygen profile in the as-grown state was identified as the major source of poor precipitation uniformity in the HMCZ silicon.

  • PDF

Dynamic Characteristics of Composite Plates Subjected to Electromagnetic and Thermal Fields (자기장 및 열하중을 받는 복합재료 판의 동적 특성)

  • Kim, Sung-Kyun;Lee, Kune-Woo;Moon, Jei-Kwon;Choi, Jong-Woon;Kim, Young-Jun;Park, Sang-Yun;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.6
    • /
    • pp.536-545
    • /
    • 2011
  • Structural model of laminated composite plates based on the first order shear deformable plate theory and subjected to a combination of magnetic and thermal fields is developed. Coupled equations of motion are derived via Hamilton's principle on the basis of electromagnetic equations (Faraday, Ampere, Ohm, and Lorentz equations) and thermal ones which are involved in constitutive equations. In order to reveal the implications of a number of geometrical and physical features of the model, free vibration of a composite plate immersed in a transversal magnetic field and subjected to a temperature gradient is considered. Special coupling effects between the magnetic-thermal-elastic fields are revealed in this paper.