• Title/Summary/Keyword: transverse cracks

Search Result 155, Processing Time 0.017 seconds

A design guide to minimize frost heave in unbound pavement layers over box culverts (저토피부 암거상부 포장의 도상피해 예방을 위한 단명설계)

  • Seo, Young-Guk
    • International Journal of Highway Engineering
    • /
    • v.9 no.3
    • /
    • pp.111-121
    • /
    • 2007
  • During the whole month of December in 2005, Korea experienced both heavy snowfall and freezing temperature in southeast regions, which had caused frost related damages to many pavements laid on top of box culverts. In-situ observation revealed that the formation of ice lenses in subgrade and subsequent unbound layers led to upward heaving and transverse cracks in concrete and asphalt pavements. This has affected the long-term performance of pavements, as well as has threatened drivers' safety for a while. Recently, Korea Expressway Corporation has proposed a design guide to better protect newly constructed unbound pavement layers over culverts from frost heave. A trench drainage system has been selected to effectively draw off water and to alleviate pore-water pressure in soils during the coldest season. This paper presents experimental and analytical backgrounds behind this new design guide. Soil specimens retrieved from the sites are tested to quantify clay content and to estimate the permeability of subgrade. A 2-D ground seepage analysis has been conducted to better understand the changes in pore water pressures as a function of grain size. Finally, an optimum size of trench drainage is determined based on numerical analysis and workability in the field.

  • PDF

Assessment of NATM tunnel lining thickness and its behind state utilizing GPR survey (GPR탐사를 통한 NATM터널(무근)라이닝의 두께 분포 및 배면상태 평가)

  • Choo, Jin-Ho;Yoo, Chang-Kyoon;Oh, Young-Chul;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.717-733
    • /
    • 2019
  • In this study, lining thickness distribution and its behind state (particularly, its void state) were analyzed using the GPR survey data performed on three currently operating NATM tunnels. Results of GPR analysis showed that void areas were mostly detected between concrete lining and primary support, particularly, near the crown of the tunnels. The lining thickness in the left-hand side of the tunnel was different from that of the right-hand side by 8.6~253.5 mm when measured in transverse direction. It was also found that longitudinal cracks were prevailed in the area lining thickness was sharply changed. Longitudinal thickness distribution at the crown was also studied and tested by performing 3 goodness-of-fit tests in order to find the most suitable thickness distribution. Normal distribution (or similar distribution) fit most suitably to the measured data if the measured average thickness was larger than designed one; Gamma and/or Inverse Gauss distribution fit to the measured data reasonably well if the measured average thickness was less than the designed value of thickness. Since actual lining thickness can be a potential index when assessing the state and safety of the unreinforced NATM tunnel lining, measuring of the lining thickness with GPR survey might be needed rather than assuming the thickness is always constant and same with the designed value.

Evaluation of Bursting Behavior in Anchorage Zone of PSC I Girders (PSC I 거더의 정착부 파열거동 평가)

  • Choi, Kyu Chon;Park, Young Ha;Paik, In Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.329-336
    • /
    • 2010
  • An experimental study to evaluate bursting behavior in anchorage zone of the standard PSC I girders (span length : 30 m) has been carried out. The arrangement of bursting reinforcement in anchorage zone of the standard PSC I girders is considered to be designed without accurately reflecting the stress flows in the end zone of the PSC I girders caused by presstressing forces of the tendons. Also, due to excessive arrangement of the bursting bars, the workability of the girder is decreased greatly. In this study, three specimens with the same dimensions as the end zone of the standard PSC I girder are prepared and the experiment is carried out by applying PS forces. The bursting reinforcement of each specimen consists of 100 mm, 200 mm, and 300mm spacings, respectively. The experimental results show that the range of the PS forces to cause crack in the anchorage zone of the specimen are more than 1.6 times of the design PS forces. The bursting cracks occur in the vertical direction on the inside of all specimens. After applying 2.7 times of the design PS force, some of the transverse bursting reinforcements only in the specimen reinforced by 300 mm spacing yielded. The experimental results show that the anchorage zone of the standard PSC I girders arranged by 300 mm spacing of the bursting reinforcements which is the maximum spacing allowed in the road bridge design specifications, can be considered safe enough.

Development of Evaluation Method for Jointed Concrete Pavement with FWD and Finite Element Analysis (FWD와 유한요소해석을 이용한 줄눈콘크리트포장 평가법 개발)

  • Yun, Kyong-Ku;Lee, Joo-Hyung;Choi, Seong-Yong
    • International Journal of Highway Engineering
    • /
    • v.1 no.1
    • /
    • pp.107-119
    • /
    • 1999
  • The joints in the jointed concrete pavement provide a control against transverse or longitudinal cracking at slab, which may be caused by temperature or moisture variation during or after hydration. Without control of cracking, random cracks cause more serious distresses and result in structural or functional failure of pavement system. However, joints nay cause distresses due to its inherent weakness in structural integrity. Thus, the evaluation at joint is very important. and the joint-related distresses should be evaluated reasonably for economic rehabilitation. The purpose of this paper was to develop an evaluation system at joints of jointed concrete pavement using finite element analysis program, ILLI-SLAB, and nondestructive testing device. FWD. To develop an evaluation system for JCP, a sensitivity analysis was performed using ILLI-SLAB program with a selected variables which might affect fairly to on the performance of transverse joints. The most significant variables were selected from precise analysis. An evaluation charts were made for jointed concrete pavement by adopting the field FWD data. It was concluded that the variables which most significantly affect to pavement deflections are the modulus of subgrade reaction(K) and the modulus of dowel/concrete interaction(G), and limiting criteria on the performance of joints at JCP are 300pci. 500,000 lb/in. respectively. Using these variables and FWD test, a charts of load transfer ratio versus surface deflection at joints were made in order to evaluate the performance of JCP. Practically, Chungbu highway was evaluated by these evaluation charts and FWD field data for jointed concrete pavement. For Chungbu highway, only one joint showed smaller value than limiting criterion of the modulus of dowel/concrete interaction(G). The rest joints showed larger values than limiting criteria of the modulus of subgrade reaction(K) and the modulus of dowel/concrete interaction(G).

  • PDF

The fracture resistance of heat pressed ceramics with wire reinforcement (금속선 강화에 따른 열 가압 도재의 파절저항)

  • Jo, Deuk-Won;Dong, Jin-Keun;Oh, Sang-Chun;Kim, Yu-Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.191-198
    • /
    • 2009
  • Statement of problem: Ceramics have been important materials for the restoration of teeth. The demands of patients for tooth-colored restorations and the availability of various dental ceramics has driven the increased use of new types of dental ceramic materials. Improved physical properties of theses materials have expanded its use even in posterior crowns and fixed partial dentures. However, ceramic still has limitation such as low loading capability. This is critical for long-span bridge, because bridge is more subject to tensile force. Purpose: The wire reinforced ceramic was designed to increase the fracture resistance of ceramic restoration. The purpose of this study was to evaluate the fracture resistance of wire reinforced ceramic. Material and methods: Heat pressed ceramic(ingot No.200 : IPS Empress 2, Ivoclar Vivadent, Liechtenstein) and Ni-Cr wire(Alfa Aesar, Johnson Matthey Company, USA) of 0.41 mm diameter were used in this study. Five groups of twelve uniform sized ceramic specimens(width 4 mm, thickness 2 mm, length 15 mm) were fabricated. Each group had different wire arrangement. Wireless ceramic was used as control group. The experimental groups were divided according to wire number and position. One, two and three strands of wires were positioned on the longitudinal axis of specimen. In another experimental group, three strands of wires positioned on the longitudinal axis and five strands of wires positioned on the transverse axis. Three-point bending test was done with universal testing machine(Z020, Zwick, Germany) to compare the flexural modulus, flexural strength, strain at fracture and fracture toughness of each group. Fractured ceramic specimens were cross-sectioned with caborundum disc and grinded with sandpaper to observe interface between ceramic and Ni-Cr wire. The interface between ceramic and Ni-Cr wire was analyzed with scanning electron microscope(JSM-6360, JEOL, Japan) under platinum coating. Results: The results obtained were as follows: 1. The average and standard deviation in flexural modulus, flexural strength and fracture toughness showed no statistical differences between control and experimental groups. However, strain was significantly increased in wire inserted ceramics(P<.001). 2. Control group showed wedge fracture aspects across specimen, while experimental groups showed cracks across specimen. 3. Scanning electron microscopic image of cross-sectioned and longitudinally-sectioned specimens showed no gap at the interface between ceramic and Ni-Cr wire. Conclusion: The results of this study showed that wire inserted ceramics have a high strain characteristic. However, wire inserted ceramics was not enough to use at posterior area of mouth in relation to flexural modulus and flexural strength. Therefore, we need further studies.