• Title/Summary/Keyword: transportation robot

Search Result 86, Processing Time 0.026 seconds

A Study on Manufacturing of Mobile Robot System having Flexible Trajectory for Manless-Transportation (무인 운반용 유연궤도 이동로봇 시스템 제작에 관한 연구)

  • 이부형;송필재
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.284-288
    • /
    • 2003
  • In this paper, a mobile robot system which have trajectory of metal tape- type is designed and manufactured. The mobile robot for manless-transportation consists of sensor-part with ultrasonic and infrared sensor, motor-part with motor and encoder, user interface-part, central control-part and computer interface-part. The ultrasonic sensor detects obstacles which can appear during the mobile robot is move. The infrared sensor has ability which detect the metal tape trajectory and then lead the robot to a correct position. By using the mobile robot, the flexiblity of a moving trajectory is improved and cost which can happen in using a mobile robot system having trajectory is cut as well.

  • PDF

Improved Design for Enhanced Grip Stability of the Flexible Gripper in Harvesting Robot (파지 안정성을 강화한 과수 수확용 로봇 그리퍼의 설계 개선)

  • Choi, Du Soon;Moon, Sun Young;Hwang, Myun Joong
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.2
    • /
    • pp.107-114
    • /
    • 2020
  • In robotic harvesting, a gripper to manipulate the fruits needs to be attached to the robot system. We proposed a flexible robot gripper that can actively respond to the shape of an object such as fruits in the previous work. However, we found that there is a possibility of not being reliably gripped when the object slides during contact with a finger. In this paper, the improved gripper design is proposed to fundamentally solve the problems of the previous gripper. The position of the finger and the maximum closed position are changed, and the design improvement is performed to increase the grip stability by changing the installation angle of the link portion of the finger. Based on the improved design, a modified gripper is fabricated by 3-D printing, and then gripping experiments are performed on spherical object and fruit model object. It is shown that the gripper can stably grip the objects without excessive bending of the finger link of the gripper. The contact pressure between the finger and the surface of the object is measured, and it is verified that it is a sufficiently small pressure that does not cause damage to the fruit. Therefore, the proposed gripper is expected to be successfully applied in harvesting.

Task Allocation of Intelligent Warehouse Picking System based on Multi-robot Coalition

  • Xue, Fei;Tang, Hengliang;Su, Qinghua;Li, Tao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3566-3582
    • /
    • 2019
  • In intelligent warehouse picking system, the allocation of tasks has an important influence on the efficiency of the whole system because of the large number of robots and orders. The paper proposes a method to solve the task allocation problem that multi-robot task allocation problem is transformed into transportation problem to find a collision-free task allocation scheme and then improve the capability of task processing. The task time window and the power consumption of multi-robot (driving distance) are regarded as the utility function and the maximized utility function is the objective function. Then an integer programming formulation is constructed considering the number of task assignment on an agent according to their battery consumption restriction. The problem of task allocation is solved by table working method. Finally, simulation modeling of the methods based on table working method is carried out. Results show that the method has good performance and can improve the efficiency of the task execution.

Robust yaw Motion Control of Unicycle Robot (외바퀴 로봇의 진행 방향 강인 제어)

  • Lim, Hoon;Hwang, Jong-Myung;Ahn, Bu-Hwan;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1130-1136
    • /
    • 2009
  • A new control algorithm for the yaw motion control of a unicycle robot has been proposed in this paper. With the increase of life quality, there are various transportation systems such as segway and unicycle robot which provide not only transportation but also amusement. In most of the unicycle robots share the same technology in that the directions of roll and pitch are controlled by the balance controllers, allowing the robots to maintain balance for a long period by continuously moving forward and backward. However, one disadvantage of this technology is that it cannot provide the capability to the robots to avoid obstacles in their path way. This research focuses to provide the yawing function to the unicycle robot and to control the yaw motion to avoid the obstacles as desired. For the control of yawing motion, the yaw angle is adjusted to the inertia generated by the velocity and torque of a yawing motor which is installed in the center axes of the unicycle robot to keep the lateral control simple. Through the real experiments, the effective and robustness of the yawing control algorithm has been demonstrated.

Object-Transportation Control of Cooperative AGV Systems Based on Virtual-Passivity Decentralized Control Algorithm

  • Suh, Jin-Ho;Lee, Young-Jin;Lee, Kwon-Soon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1720-1730
    • /
    • 2005
  • Automatic guided vehicle in the factory has an important role to advance the flexible manufacturing system. In this paper, we propose a novel object-transportation control algorithm of cooperative AGV systems to apply decentralized control to multiple AGV systems. Each AGV system is under nonholonomic constraints and conveys a common object-transportation in a horizontal plain. Moreover it is shown that cooperative robot systems ensure stability and the velocities of augmented systems convergence to a scaled multiple of each desired velocity field for cooperative AGV systems. Finally, the application of proposed virtual passivity-based decentralized control algorithm via system augmentation is applied to trace a circle. Finally, the simulation and experimental results for the object-transportation by two AGV systems illustrates the validity of the proposed virtual-passivity decentralized control algorithm.

A Development of Transfer Robot for Container Loading/unloading Horizontally (컨테이너 수평이송을 위한 이송로봇 개발)

  • Lee, Young-Jin;Han, Dong-Seop;Cho, Hyeun-Cheol;Han, Geun-Jo;Koo, Kyung-Wan;Lee, Kwon-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.221-229
    • /
    • 2011
  • Recently, intermodal transportation systems are significantly considered as enhanced technique or future railroad logistics. These are aimed for particularly reducing complicated job process in the railroad based transportation and relevant logistic cost in economic viewpoint. In this paper we suggest a horizontal transfer system using hydro-motor and hydro-cylinder for intermodal transportation system. This system can assist to transfer the containers horizontally for train logistics automations.

Development of a Care Robot for Lift and Transfer of Bedridden Patients (와상환자의 이승 및 이송 작업을 위한 돌봄로봇 개발)

  • Konchanok Vorasawad;Hyeokdong Kweon;Changwon Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.403-408
    • /
    • 2023
  • In this paper, we introduce the results of the development of a care robot for the safe lifting and transportation of bedridden patients with difficulty moving by themselves, especially, in medical facilities. The purpose of the developed patient transfer robot is to improve the convenience of care givers and enhance the safety and comfort of care recipients by facilitating patient lifting and patient transfer tasks by applying robot technology. In order to implement the lifting function, a hoist was designed and developed, and a sway control and rollover warning system were included in the hoist module as product differentiators. In addition, in terms of implementing the transfer function, an omnidirectional movement mechanism to improve operability in confined spaces and an active safety system to prevent collisions were developed. The function of the developed patient transfer robot was verified through performance evaluation by an authorized testing agency.

Rmap+: Autonomous Path Planning for Exploration of Mobile Robot Based on Inner Pair of Outer Frontiers

  • Buriboev, Abror;Kang, Hyun Kyu;Lee, Jun Dong;Oh, Ryumduck;Jeon, Heung Seok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.10
    • /
    • pp.3373-3389
    • /
    • 2022
  • Exploration of mobile robot without prior data about environments is a fundamental problem during the SLAM processes. In this work, we propose improved version of previous Rmap algorithm by modifying its Exploration submodule. Despite the previous Rmap's performance which significantly reduces the overhead of the grid map, its exploration module costs a lot because of its rectangle following algorithm. To prevent that, we propose a new Rmap+ algorithm for autonomous path planning of mobile robot to explore an unknown environment. The algorithm bases on paired frontiers. To navigate and extend an exploration area of mobile robot, the Rmap+ utilizes the inner and outer frontiers. In each exploration round, the mobile robot using the sensor range determines the frontiers. Then robot periodically changes the range of sensor and generates inner pairs of frontiers. After calculating the length of each frontiers' and its corresponding pairs, the Rmap+ selects the goal point to navigate the robot. The experimental results represent efficiency and applicability on exploration time and distance, i.e., to complete the whole exploration, the path distance decreased from 15% to 69%, as well as the robot decreased the time consumption from 12% to 86% than previous algorithms.

Development of Transportation Robots in Semiconductor Logistics (반도체 물류 이송로봇의 개발)

  • Woohyeon Hwang;Iljun Jang;Nayun Hwang;Seungbyeong Chae;Seongyun Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.307-309
    • /
    • 2024
  • 세계적으로 물류 자동화 시장은 2026년까지 약 44조원으로 예상되며, 연평균 10.6%의 성장률을 기록할 것으로 예측된다. 특히 국내 시장은 2025년까지 연평균 성장률 11.5%로 1조원 이상으로 전망되고 있다. 2025년까지 물류 자동화 시장은 270억 달러로 급성장할 것으로 예상되며, 반도체 분야에서 로봇이 상품 입고, 보관, 상품 피킹, 분류, 출고 작업을 담당하는 트렌드가 강조된다. 본 논문은 반도체 물류 분야를 대상으로 작은 크기와 민첩성을 갖춘 로봇을 개발하여 작업 공간을 효율적으로 활용하고 인력을 최소화하려는 목적이다. 수직 및 수평 로봇은 효율적인 자동화 시스템을 제공하며, UI를 사용하여 AGV, 선반, 스카라 로봇을 하나의 통합 시스템으로 개발하고자 한다. 특히 코드 인식, 초음파 센서, 아두이노 MCU, 스카라 로봇, AGV 등을 활용한 로봇 시스템을 개발하여 반도체 물류 작업을 효율적으로 수행하고자 한다. 다양한 분야에서 활용 가능한 스카라 로봇을 개발하기 위해 마이크로 스텝과 풀리, 타이밍 벨트를 이용한 구동 방식 등을 채택한다. 반도체 물류 센터에서의 자동화는 물류 공간의 확대와 인건비 절감을 기대할 수 있으며, 로봇 및 드론을 활용하여 인건비 절감과 효율성 향상을 통해 기업 비용 절감에 기여할 것으로 예상된다.

  • PDF