• Title/Summary/Keyword: transportation production

Search Result 787, Processing Time 0.031 seconds

A Comparative Study on Economic Effects on the Korean Economy by Transport Mode Using Input-Output Analysis (산업연관분석에 의한 운송부문별 국민경제적 파급효과의 상호비교 분석)

  • Lee, Tae-Woo;Chang, Young-Tae;Shin, Sung-Ho
    • Proceedings of the Korea Port Economic Association Conference
    • /
    • 2006.08a
    • /
    • pp.103-124
    • /
    • 2006
  • This paper is concerned with a comparative study on the economic effects upon the Korean economy by transport mode, ie road, rail, air, and coastal and inland water transportation between 1990 and 2000, using input-output analysis. The economic effects consist of backward and forward linkage effects, production inducing and import-inducing effects. The data employed for this study come from the Bank of Korea database for Input-Output structure of the Korean economy. The major findings in this study are, among others:(1) the power of dispersion(=backward linkage effect) of coastal and inland water transportation sector is the highest among the four transport sectors, while road cargo transport mode showed the highest the degree of sensitivity (=forward linkage effect); (2) rail cargo transport recorded the highest production inducing effects; and (3) air transport mode achieved the highest ranking in the import-inducing effects.

  • PDF

Estimation of Biomass Resources Potential (바이오매스 자원 잠재량 산정)

  • Lee, Joon-pyo;Park, Soon-chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • Biomass has been used for energy sources from the prehistoric age. Biomass are converted into solid, liquid or gaseous fuels and are used for heating, electricity generation or for transportation recently. Solid biofuels such as bio-chips or bio-pellet are used for heating or electricity generation. Liquid biofuels such as biodiesel and bioethanol from sugars or lignocellulosics are well known renewable transportation fuels. biogas produced from organic waste are also used for heating, generation and vehicles. Biomass resources for the production of above mentioned biofuels are classified under following 4 categories, such as forest biomass, agricultural residue biomass, livestock manure and municipal organic wastes. The energy potential of those biomass resources existing in Korea are estimated. The energy potential for dry biomass (forest, agricultural, municipal waste) were estimated from their heating value contained, whereas energy potential of wet biomass (livestock manure, food waste, waste sludge) is calculated from the biological methane potential of them on annual basis. Biomass resources potential of those 4 categories in Korea are estimated to be as follows. Forest biomass 355.602 million TOE, agricultural biomass 4.019 million TOE, livestock manure biomass 1.455 million TOE, and municipal organic waste 1.074 million TOE are available for biofuels production annually.

Heat-treatment effects on oxygen evolution reaction of nickel-cobalt layered double hydroxide

  • Lee, Jung-Il;Ko, Daehyeon;Mhin, Sungwook;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.3
    • /
    • pp.143-148
    • /
    • 2021
  • Alkaline oxygen evolution reaction (OER) electrocatalysts have been widely studied for improving the efficiency and green hydrogen production through electrochemical water splitting. Transition metal-based electrocatalysts have emerged as promising materials that can significantly reduce the hydrogen production costs. Among the available electrocatalysts, transition metal-based layered double hydroxides (LDHs) have demonstrated outstanding OER performance owing to the abundant active sites and favorable adsorption-desorption energies for OER intermediates. Currently, cobalt doped nickel LDHs (NiCo LDHs) are regarded as the benchmark electrocatalyst for alkaline OER, primarily owing to the physicochemical synergetic effects between Ni and Co. We report effects of heat-treatment of the as-grown NiCo LDH on electrocatalytic activities in a temperature range from 250 to 400℃. Electrocatalytic OER properties were analysed by linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). The heat-treatment temperature was found to play a crucial role in catalytic activity. The optimum heat-treatment temperature was discussed with respect to their OER performance.

An Economic Analysis for Establishing a Hydrogen Supply Plan in the Metropolitan Area (수도권 수소 공급 계획 수립을 위한 사전 경제성 분석)

  • PARK, HYEMIN;KIM, SUHYUN;KIM, BYUNGIN;LEE, SEUNGHUN;LEE, HYEJIN;YOO, YOUNGDON
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.3
    • /
    • pp.183-201
    • /
    • 2022
  • In this study, economic feasibility analysis was performed when various hydrogen production and transport technologies were applied to derive hydrogen supply plans by period. The cost of hydrogen may vary depending on several reasons; configuration of the entire cycle supply path from production, storage/transportation, and utilization to the cost that can be supplied to consumers. In this analysis, the hydrogen supply price according to the hydrogen supply route configuration for each period was analyzed for the transportation hydrogen demand in metropolitan area, where the demand for hydrogen is expected to be the highest due to the expansion of hydrogen supply.

Riser Configuration Design for a 15-MW Floating Offshore Wind Turbine Integrated with a Green Hydrogen Facility

  • Sung-Jae Kim;Sung-Ju Park
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.137-147
    • /
    • 2024
  • Green hydrogen presents a sustainable and environmentally friendly solution for clean energy production and transportation. This study aims to identify the optimal profile of green hydrogen transportation risers originating from a floating offshore wind turbine (FOWT) integrated with a hydrogen production facility. Employing the Cummins equation, a fully coupled dynamic analysis for FOWT with a flexible riser was conducted, with the tower, mooring lines, and risers described using a lumped mass line model. Initially, motion response amplitude operators (RAOs) were compared with openly published results to validate the numerical model for the FOWT. Subsequently, a parametric study was conducted on the length of the buoyancy module section and the upper bare section of the riser by comparing the riser's tension and bending moment. The results indicated that as the length of the buoyancy module increases, the maximum tension of the riser decreases, while it increases with the lengthening of the bare section. Furthermore, shorter buoyancy modules are expected to experience less fatigue damage, with the length of the bare section having a relatively minor impact on this phenomenon. Consequently, to ensure safety under extreme environmental conditions, both the upper bare section and the buoyancy module section should be relatively short.

A Basic Study for the Integrated Managment of the Production Transportation, and Installation of Precast Concrete Panels (P.C.부재의 생산, 운송 및 시공부분의 일체화된 관리를 위한 기초연구)

  • 조건희;김재준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.415-422
    • /
    • 1994
  • Recent new town construction project proouced large numbers of apartment houses using precast concrete (P. C.) panels. l'bst construction companies involved in this project put their management focus on to the individual control of P.C. panel producing plants and the job sites. Little attention was paid to the integrated management of the production. transportation. and im;tallation of P. C. panels. Numerous job site delays experienced in the new town project were largely based on the poor coordination between these three key disciplines of the P. C. apartment construction. This stlldy was initiated with an .intention to improve coordination between these disciplines. Activities of these disciplines were identified and related data were gathered. This was performed through the interv:iews with the personnel involved in P. C. constructlon and through the analy::;is of the related documents and publications. Based on this information. the authors are nolol developing a model IoIhich will provide a foundation for opt:iJnal.ly coorc.inated control of the proouction. transportation, and installation of P. C. panels for apartment construction. In this paper. the authors briefly present intermediate results of this study.

  • PDF

The Change and Characteristics of Y$\u{o}$ju Regional Economic Base (여주 지역 경제기반의 변화와 지역 특성 연구)

  • Nam, Hye-Ryung
    • Journal of the Korean Geographical Society
    • /
    • v.33 no.1
    • /
    • pp.93-107
    • /
    • 1998
  • The purpose of this paper is to examine the change in the regional characteristics of Y${\={o}}$ju as its economic base has been shifted. From Chosun Dynasty to the mid 1960s, Y${\={o}}$ju had been known as a core of rice production, utilizing favorable natural conditions and well developed river transportation system, with commercial and administrative functions. From the mid 1960s to the mid 1980s, Y${\={o}}$ju had been excluded from the process of the national industrilization, which made Y${\={o}}$ju remain lagged. The transportation system was blocked and the industrial investment in this area was prevented by a variety of restrictive laws. Since the mid 1980s, Y${\={o}}$ju entered into a prosperous are as the land transportation system began to be dramatically improved and some of the restrictions were alleviated. Tecently, diversification and commercialization in the agricultural sector have progressed in land use. In the manufacturing sector, Y${\={o}}$ju becomes a core of the pottery industry in tems of the total amount of its production.

  • PDF

DESIGN AND PERFORMANCE EVALUATION OF A CABBAGE LOADER

  • Chang, Y.C.;Cho, S.I.;Yeo, Y.W.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.480-488
    • /
    • 2000
  • Cabbage is the most important vegetables in korea. The cabbage production was based on arduous human labor. A comprehensive research for substituting the human work by machines has been performed at present. In general, cabbage is cultivated on hillside in korea. The harvested cabbage in a field and carrying it to a vehicle for transportation are very laborious work. Hand labor in cabbage transportation to the market damages the quality of cabbage and is also a cause to increase the cost of cabbage production. This study was to design and evaluate a prototype cabbage loader for deserving efficient and safe transportation of cabbage. The developed cabbage loader was a semi-tracked vehicle operated by a hydraulic system, allowing the safe transporting and the loading of cabbage in a steep field. The maximum loading capacity of the loader was 1.0 ton. By using safety devices attached to the loader, the static slopes were 34.0% and 37.4% for the left and the rear roll-over, respectively. The maximum field speed was about 6km/hr with two cabbage pallets of 750kg at a 25% inclined field. The field capacity was about 35 pallets/hr in case of picking up, carrying and unloading two cabbage pallets. The field efficiency of the loader was analyzed to be more than 8 times in comparison of the conventional human labor. The developed loader would be applied for loading and carrying the other vegetables due to the similarity of operations. The study suggested a standard approach to the design of field machines operated in a steep field.

  • PDF

Syngas and Hydrogen Production from $CeO_2/ZrO_2$ coated Foam Devices under Simulated Solar Radiation (다공성 폼에 코팅된 $CeO_2/ZrO_2$ 를 이용한 고온 태양열 합성가스 및 수소 생산 연구)

  • Jang, Jong-Tak;Yoon, Ki-June;Han, Gui-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.260-266
    • /
    • 2012
  • Syngas and hydrogen from the $CeO_2/ZrO_2$ coated foam devices were investigated under simulated solar radiation. The $CeO_2/ZrO_2$ coated SiC, Ni and Cu foam device were prepared using drop-coating method. Syngas production step was performed at $900^{\circ}C$, and hydrogen production process was performed for ten repeated cycles to compare the CeO2 conversion in syngas production step, $H_2$ yield in hydrogen production step and cycle reproducibility. The produced syngas had the $H_2$/CO ratio of 2, which was suitable for methanol synthesis or Fischer-Tropsch synthesis process. In addition, syngas and hydrogen production process is one of the promising chemical pathway for storage and transportation of solar heat by converting solar energy to chemical energy. After ten cycles of redox reaction, the $CeO_2/ZrO_2$ was analyzed using XRD pattern and SEM image in order to characterize the physical and chemical change of metal oxide at the high temperature.

  • PDF

H2-MHR PRE-CONCEPTUAL DESIGN SUMMARY FOR HYDROGEN PRODUCTION

  • Richards, Matt;Shenoy, Arkal
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • Hydrogen and electricity are expected to dominate the world energy system in the long term. The world currently consumes about 50 million metric tons of hydrogen per year, with the bulk of it being consumed by the chemical and refining industries. The demand for hydrogen is expected to increase, especially if the U.S. and other countries shift their energy usage towards a hydrogen economy, with hydrogen consumed as an energy commodity by the transportation, residential and commercial sectors. However, there is strong motivation to not use fossil fuels in the future as a feedstock for hydrogen production, because the greenhouse gas carbon dioxide is a byproduct and fossil fuel prices are expected to increase significantly. An advanced reactor technology receiving considerable international interest for both electricity and hydrogen production, is the modular helium reactor (MHR), which is a passively safe concept that has evolved from earlier high-temperature gas-cooled reactor (HTGR) designs. For hydrogen production, this concept is referred to as the H2-MHR. Two different hydrogen production technologies are being investigated for the H2-MHR; an advanced sulfur-iodine (SI) thermochemical water splitting process and high-temperature electrolysis (HTE). This paper describes pre-conceptual design descriptions and economic evaluations of full-scale, nth-of-a-kind SI-Based and HTE-Based H2-MHR plants. Hydrogen production costs for both types of plants are estimated to be approximately $2 per kilogram.