• Title/Summary/Keyword: transportation production

Search Result 787, Processing Time 0.031 seconds

The analysis of value chains for the chestnut industry in Chungcheongnam-do

  • Lee, Bo-Hwi;Ji, Dong-Hyun;Kang, Kil-Nam;Kim, Se-Bin
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.2
    • /
    • pp.298-307
    • /
    • 2018
  • The aim of this study was to enhance the value of the chestnut industry by analyzing the value chain structure. Based on the value chain theory, it is divided into primary activities and support activities. Thus, in total, 27 subjects from Gongju, Buyeo, and Cheongyang were interviewed and self-administered questionnaire. Regarding the value chain structure of the chestnut industry, the primary activities consisted of production followed by cultivation and storing, sorting and packaging, transportation and marketing sales. The support activities were divided into production infrastructure, policy, R&D, and systematization. The primary activities are able to maximize profits through cost reductions. The production was divided into general and environmentally friendly cultivation. Depending on the labor force, it is family-centered labor. However, the installation of harvest nets depends on a hired labor force (40 - 60%) such that it would be necessary to have a mechanized harvest to replace the manpower for the cost reduction. Transportation, marketing sales, and backdoor selling (38.1%) were higher than the existing channels (31.0%) using the National Agricultural Cooperative Federation. The enhancement of value could be created by maximizing profits through the reinforcement of the links between each subject. The production showed strong connections with cultivation/storing, sorting/packing, and backdoor selling and the National Forestry Cooperative Federation. The processing stage is a very simple structure, it would be necessary to have R&D and to support promotions, infrastructure, machines, and sales increases, which should be expanded by connections with other industries like the food industry.

Ethanol Production from Glycerol using Pachysolen tannophilus in a Surface-aerated Fermentor (Surface-aerated fermentor에서 Pachysolen tannophilus를 이용한 glycerol로 부터 ethanol 생산)

  • Kim, Yi-Ok;Choi, Woon-Yong;Kang, Do-Hyung;Lee, Hyeon-Yong;Jung, Kyung-Hwan
    • Journal of Life Science
    • /
    • v.23 no.7
    • /
    • pp.886-892
    • /
    • 2013
  • We investigated ethanol production from glycerol after screening of the yeast Pachysolen tannophilus ATCC 32691. For yeast to produce ethanol form glycerol, it is important that aeration is finely controlled. Therefore, we attempted to produce ethanol using a surface-aerated fermentor. When 880 ml of YPG medium (1% yeast extract, 2% peptone, 2% glycerol) was used to produce ethanol, the optimal aeration conditions for ethanol production were a surface aeration rate and agitation speed of 500 ml/min and 300 rpm, respectively. In a fed-batch culture, the maximum ethanol production and the maximum ethanol yield from glycerol (Ye/g) was 5.74 g/l and 0.166, respectively, after 90 hr using the surface-aerated fermentor.

Some Consideration on Assets Operation in Transport Enterprises of China Railways

  • Shen Junzuo
    • Proceedings of the KOR-KST Conference
    • /
    • 1998.09a
    • /
    • pp.198-203
    • /
    • 1998
  • Through an analyses of the necessity and the practical meaning of the assets operation in railway transport enterprises, the authors argue that a railway transport enterprise shall lay equal stress on assets operation and production management, and suggest to take concrete steps on the basis of the aforesaid management strategy.

  • PDF

Optimal Operation Scale of Hog Production for Farrow-to-Finish Farms

  • Huang, Y.H.;Lee, Y.P.;Yang, T.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.9
    • /
    • pp.1326-1330
    • /
    • 2001
  • This study analyzed the lowest production cost and the greatest profit to be obtained from marketing hogs to determine the optimal operation scale for family-owned farrow-to-finish farms. Data were collected from 39 farrow-to-finish farms with 500 to 5,000 inventories for two consecutive years, and treated with GLM and quadratic regression models using the REG procedure. Analysis results indicated that farms capable of marketing 2,933 and 3,286 hogs annually had the lowest production cost and the greatest profit, respectively. Further analysis attributed the lowest production cost or the highest return in farms with an optimal scale of 3,000 to a higher survival rate of the herd, as well as lower expenses in veterinary medicine, labor, utilities and fuel, transportation, and depreciation. A similar feed conversion efficiency was observed for all the farms studied. Obviously, the cost efficiencies were associated with the economy of the operation scale of hog production until it reached 3,000 hogs marketed annually for a family-run unit. Beyond the optimal scale of 3,000 hogs, good stockmanship was more difficult to maintain and the herd management deteriorated as increasing mortality confirms. It is conclude that, unless advanced management is applied, the operation scale should not expand beyond 3,000 hogs.

Current status, challenges and prospects for dairy goat production in the Americas

  • Lu, Christopher D.;Miller, Beth A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8_spc
    • /
    • pp.1244-1255
    • /
    • 2019
  • Dairy goat production continues to be a socially, economically and culturally important part of the livestock industry in North, Central and South America and the Caribbean islands. Goat milk, cheese and other dairy products offer consumers food products with nutritional, health and environmental benefits. In North America, Mexico produces the greatest volume of goat milk, but most is for family or local consumption that is typical of a mixed farming system adopted by subsistence farmers in dry areas. The United States is not yet a large global goat milk producer, but the sector has expanded rapidly, with dairy goat numbers doubling between 1997 and 2012. The number of dairy goats has also increased dramatically in Canada. Commercial farms are increasingly important, driven by rising demand for good quality and locally sourced goat cheese. In South America, Brazil has the most developed dairy goat industry that includes government assistance to small-scale producers and low-income households. As of 2017, FAO identified Haiti, Peru, Jamaica, and Bolivia as having important goat milk production in the Western Hemisphere. For subsistence goat producers in the Americas on marginal land without prior history of chemical usage, organic dairy goat production can be a viable alternative for income generation, with sufficient transportation, sanitation and marketing initiatives. Production efficiency, greenhouse gas emission, waste disposal, and animal welfare are important challenges for dairy goat producers in the Americas.

Predicting Initial Construction Costs of Electrolysis Hydrogen Production Plants for Building Sustainable Energy Systems (지속 가능한 에너지 시스템 구축을 위한 전기분해 수소 생산 플랜트 초기 건설비용 예측)

  • SUNGWOOK KANG;JOONHEON KIM;JONGHWA PARK;DAEMYEONG CHO
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.3
    • /
    • pp.257-268
    • /
    • 2024
  • Hydrogen serves as a clean energy source with potential applications across various sectors including electricity, transportation, and industry. In terms of policy and economic support, governmental policy backing and economic incentives are poised to accelerate the commercialization and expansion of hydrogen energy technologies. Hydrogen energy is set to become a cornerstone for a sustainable future energy system. Additionally, when constructing hydrogen production plants, economic aspects must be considered. The essence of hydrogen production plants lies in the electrolysis of water, a process that separates water into hydrogen and oxygen using electrical energy. The initial capital expenditure (CAPEX) for hydrogen production plants can vary depending on the electrolysis technology employed. This study aims to provide a comprehensive understanding of hydrogen production technologies as well as to propose a method for predicting the CAPEX of hydrogen production plants.

Equilibrium trip distribution model (균형 통행분포모형연구)

  • Im, Yong-Taek
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.6
    • /
    • pp.159-166
    • /
    • 2010
  • Trip distribution is to connect travel demand for each OD pair based on travel cost, trip production and attraction derived from trip generation step. In real world the travel cost is a function of travel demand, but existing models could not fully consider such functional relation between travel cost and demand, which leads to an equilibrium in trip distribution model. This paper proves the equilibrium trip distribution by using gravity model. In order to obtain such equilibrium this paper also presents a solution algorithm based on fixed point theorem. The algorithm will be tested with an example and confirmed the equilibrium solution of trip distribution.

Traffic Accident Density Models Reflecting the Characteristics of the Traffic Analysis Zone in Cheongju (존별 특성을 반영한 교통사고밀도 모형 - 청주시 사례를 중심으로 -)

  • Kim, Kyeong Yong;Beck, Tea Hun;Lim, Jin Kang;Park, Byung Ho
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.75-83
    • /
    • 2015
  • PURPOSES : This study deals with the traffic accidents classified by the traffic analysis zone. The purpose is to develop the accident density models by using zonal traffic and socioeconomic data. METHODS : The traffic accident density models are developed through multiple linear regression analysis. In this study, three multiple linear models were developed. The dependent variable was traffic accident density, which is a measure of the relative distribution of traffic accidents. The independent variables were various traffic and socioeconomic variables. CONCLUSIONS : Three traffic accident density models were developed, and all models were statistically significant. Road length, trip production volume, intersections, van ratio, and number of vehicles per person in the transportation-based model were analyzed to be positive to the accident. Residential and commercial area ratio and transportation vulnerability ratio obtained using the socioeconomic-based model were found to affect the accident. The major arterial road ratio, trip production volume, intersection, van ratio, commercial ratio, and number of companies in the integrated model were also found to be related to the accident.

Analysis of the total system for production, transportation and utilization of hydrogen energy (수소 에너지 생산, 수송 및 이용에 대한 통합시스템 해석)

  • Oh, Byeong-Soo;Seo, Seog-Jin
    • Journal of Hydrogen and New Energy
    • /
    • v.9 no.1
    • /
    • pp.38-45
    • /
    • 1998
  • An energy crisis is expected in near future. Fossil fuel such as oil and natural gas has been used and will be no longer supplied enough to demand in the beginning of coming century. The use of the fuel makes a lot of environmental pollution to threaten human being's health especially in big cities and produces a lot of $CO_2$ to make green house effect of the earth. It is the time to use clean fuel such as hydrogen to prevent the expected energy crisis and the pollution. A new engine such as fuel cell can be used instead of the conventional internal combustion engine with 2 to 3 times higher efficiency of the conventional engine. The fuel cell uses hydrogen and oxygen and produces electric energy and pure water, which is a calm engine without air pollution. In big cities the city buses and the taxies powered by hydrogen fuel cells are suggested to be operated for clean environment. A model of the total energy system for production, transportation and utilization of hydrogen is calculated.

  • PDF

Optimized Ballast Water Exchange Management for Bulk Carriers (벌크 화물선용 자동 밸러스트수 교환계획 시스템 개발)

  • HONG CHUNG-YOU;PARK JE-WOONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.4 s.59
    • /
    • pp.65-70
    • /
    • 2004
  • Many port states, such as New Zealand, U.S.A., Australia, and Canada, have strict regulations to prevent arriving ships from discharging polluted ballast water that contains harmful aquatic organisms and pathogens. They are notified that transfer of polluted ballast water can cause serious injury to public health and damage to property and environment. For this reason, ballast exchange in deep sea is perceived as the most effective method of emptying ballast water. The ballast management plan contains the effective exchange method, ballast system, and safety considerations. In this study, we pursued both nautical engineering analysis and optimization of the algorithm, in order to generate the sequence of stability and rapidity. A heuristic algorithm was chosen on the basis of optimality and applicability to a sequential exchange problem. We have built an optimized algorithm for the automatic exchange of ballast water, by redefining core elements of the A$\ast$ algorithm, such as node, operator, and evaluation function. The final version of the optimized algorithm has been applied to existing bulk carrier, and the performance of the algorithm has been successfully verified.