• Title/Summary/Keyword: transport and diffusion

Search Result 728, Processing Time 0.033 seconds

Evaluating Chloride Absorption of Reinforced Concrete Structures with Crack Widths (균열 폭에 따른 콘크리트 구조물에서의 염화물 흡수 평가)

  • Kim, Kun-Soo;Park, Ki-Tae;Kim, Jaehwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.10-16
    • /
    • 2020
  • Deterioration of reinforced concrete structure caused by chloride ingress is the main issue and regrading this, many studies have been investigated with both experiments and computational modelling. In addition to chloride diffusion, chloride sorption should be considered as a chloride transport mechanism in concrete structure and cracks formed in concrete structures are the main variable to evaluate the performance of the structures. In this study, after making two types of cracks width (0.1 and 0.3 mm) in reinforced concretes, chloride absorption tests were performed. Weight change and colour change using 0.1 AgNO3 solution from the samples were performed to measure chloride ingress. Image processing was also carried out to quantify range of colour change in carck face. From the result, it were confirmed that the amount of chloride absorption increases with exposure time and increasing crack width, and chlorides reached at steel depth within 1 hour. It would be possible that chloride can move through interface bewteen steel and concrete, thereby further study regarding this is required.

Prevalence of Methicillin-resistant Staphylococci Isolates from Horses and Horse-related Personnel in Korea (말 및 말관련 종사자의 methicillin 내성 포도상구균의 유병율 조사)

  • Lee, Sang-Kyu;Han, Jae-Ik;Kim, Ill-Hwa;Na, Ki-Jeong;Kang, Hyun-Gu
    • Journal of Veterinary Clinics
    • /
    • v.31 no.3
    • /
    • pp.194-198
    • /
    • 2014
  • Methicillin-resistant staphylococci (MRS) are emerging as important pathogens in humans and animals worldwide. The aim of this study was to investigate the prevalence of MRS in the racehorse population and in horse-related personnel in Korea. A total of 195 horses and 18 humans (eight veterinarians, three veterinary hospital staff, and seven horse-handlers) from racehorse farms in Korea were included in the study. The samples were collected from nasal cavities using bacterial transport medium and were cultivated on tryptic soy agar with 5% sheep blood for 3 days at $37^{\circ}C$ to confirm the presence of Staphylococcus spp. Presumptive Staphylococcus spp. isolates were identified by 16S ribosomal RNA gene analysis. The coagulase test and oxacillin susceptibility tests were performed using the tube dilution and disk diffusion methods, respectively. The presence of the mecA gene was determined using a polymerase chain reaction assay. Of the 195 horses, 29 (15.6%) yielded 29 MRS isolates. Twelve (66.7%) of the 18 horse-related personnel yielded 12 MRS isolates. All of the MRS isolates from horses or horse-related personnel were identified as methicillin-resistant coagulase-negative staphylococci (MRCNS). The result of this study suggest that the prevalence of MRS increased with the duration of antibiotic use (p = 0.002). This study also provides evidence for the zoonotic transmission of MRCNS between horses and humans, although further investigations are needed.

Properties and Gas Permeability of PEBAX Composite Membrane Containing GO (GO를 함유한 PEBAX 복합막의 성질과 기체투과도)

  • Lee, Seul Ki;Hong, Se Ryeong;Lee, Hyun Kyung
    • Membrane Journal
    • /
    • v.28 no.4
    • /
    • pp.233-242
    • /
    • 2018
  • To study gas membrane using GO (graphene oxide), the PEBAX [poly(ether-block-amide)]-GO polymer composite membrane was prepared by adding GO to PEBAX. Through this composite membrane, gas permeation characteristics for $H_2$, $N_2$, $CH_4$, and $CO_2$ were studied. As a result of the gas permeation test, the permeability of $N_2$, $CH_4$, and $CO_2$ to PEBAX-GO composite membranes gradually decreased as the GO content increased. On the other hand, the gas permeability of $H_2$ increased with the increase of GO content, and it was 21.43 barrer at the GO content of 30 wt%, which was about 5 times higher than that of PEBAX membrane. This is because the GO was easier to operate with a fast and selective gas transport channel for $H_2$ than other gases. The increased selectivity ($H_2/N_2$) and selectivity ($H_2/CH_4$) were influenced by the diffusion selectivity by the permeate gas size. The increased selectivity ($CO_2/N_2$) and selectivity ($CO_2/CH_4$) were more influenced by the solubility selectivity due to the affinity of $CO_2$ and GO for -COOH.

Review of Nitrous Oxide Emission by Denitrification in Subsurface Soil Environment (심층토에 있어서 탈질화에 의한 $N_2 O$ 방출의 평가)

  • Chung Doug-Young;Jin Hyun-O;Lee Chaang-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.1 no.2
    • /
    • pp.160-164
    • /
    • 1999
  • Subsurface environments, including the intermediate vadose zone and aquifers, may be contributing to increased atmospheric concentrations of $N_2$O. Denitrification appears to be the major source of $N_2$O in the subsurface environment. In the intermediate vadose zone, the level of denitrifying activity is dependent on the soil morphology, particularly stratified layers within the soil profile, which impede water and solute movement and create conditions favorable for denitrification. Movement of organic C from the soil surface appears to support denitrifying activity by providing an energy source and increasing the consumption of $O_2$. Denitrirication and $N_2$O production have been observed in aquifers but appear to be of greatest significance in shallow unconfined aquifers. The lack of organic C, N $O_2$, or anaerobiosis is often a limiting factor for activity but seems to be site specific. The presence of denitrifying bacteria does not appear to be a major limitation, based on published results, but the ubiquity of denitrifiers in subsurface environments needs to be confirmed. The fate of the $N_2$O produced in subsurface environments is unknown. Transport of $N_2$O by up ward diffusion, by outgassing at contacts with surface waters, and by ground water use need to be quantified to determine the contribution to atmospheric $N_2$O. Contamination of subsurface environment with N $O_3$$^{ }$ and organics has the potential for increasing the contribution to atmospheric $N_2$O by enhancing denitrification .

  • PDF

Introduction of Two-region Model for Simulating Long-Term Erosion of Bentonite Buffer (벤토나이트 완충재 장기 침식을 모사하기 위한 Two-region 모델 소개)

  • Jaewon Lee;Jung-Woo Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.228-243
    • /
    • 2023
  • Bentonite is widely recognized and utilized as a buffer material in high-level radioactive waste repositories, mainly due to its favorable characteristics such as swelling capability and low permeability. Bentonite buffers play an important role in ensuring the safe disposal of radioactive waste by providing a low permeability barrier and effectively preventing the migration of radionuclides into the surrounding rock. However, the long-term performance of bentonite buffers still remains a subject of ongoing research, and one of the main concerns is the erosion of the buffer induced by swelling and groundwater flow. The erosion of the bentonite buffer can significantly impact repository safety by compromising the integrity of buffer and leading to the formation of colloids that may facilitate the transport of radionuclides through groundwater, consequently elevating the risk of radionuclide migration. Therefore, it is very important to numerically quantify the erosion of bentonite buffer to evaluate the long-term performance of bentonite buffer, which is crucial for the safety assessment of high-level radioactive waste disposal. In this technical note, Two-region model is introduced, a proposed model to simulate the erosion behavior of bentonite based on a dynamic bentonite diffusion model, and quantitative evaluation is conducted for the bentonite buffer erosion with this model.

Prediction of Absorption Behavior of Carbon Dioxide on Membrane Contactor (분리막 접촉기를 통한 이산화탄소 흡수거동 예측)

  • Cho, In-Gi;Ahn, Hyo-Seong;Hahm, Moon-Ky;Kim, I.H.;Lee, Yong-Taek;Park, You-In;Lee, Kew-Ho
    • Membrane Journal
    • /
    • v.10 no.1
    • /
    • pp.39-46
    • /
    • 2000
  • To predict the absorption behavior of carbon dioxide on membrane contactor, an aqueous potassium carbonate solution as an absorbent. The reversible reactions of carbon dioxide with chemicals were considered, and the physicochemical properties of reaction rate constants, equilibrium constants, solubilities and diffusion coefficients were used as a function of concentration of carbon dioxide and the temperature. A non-wetted mode was also used as an operating condition of the membrane contactor. In these operation conditions, the effect of the following system parameters were studied : the concentration of potassium carbonate, the velocity of the absorbent and the pressure of the mixture gas. The absorption behavior of carbon dioxide caused by a facilitated transport was observed as the increment of the concentration of the absorbent. The absorption rate of carbon dioxide was increased as the absorbent velocity was increased. Furthermore, it was found that the pressure if the mixture gas and the reuse number of absorbent affect severely the absorption rate of carbon dioxide. The absorption behavior was successfully predicted by the computer simulation using the system parameters which are important for design and operation of the membrane contactor.

  • PDF

Standardization of Underground Shopping Center Address System for the Three-Dimensional GIS-based Emergency Management (3차원 GIS기반의 소방방재를 위한 지하상가 주소체계 표준화)

  • Ha, Byeong Po;Kang, In Joon;Hong, Soon Heon;Park, Dong Hyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.4
    • /
    • pp.63-69
    • /
    • 2014
  • Due to population growth and urban development in construction technology has expanded living space, underground construction as public transport as has been extended to the ground and underground urban traffic congestion increases. This underpass Stations sphere of influence this development was the center of the living space, space-time became a cultural space. However underpass ground space and time and space are enormous difficulties in contrast visibility due to smoke when light levels are low fire occurs, momentary loss of judgment errors due to a sense of orientation, rapid diffusion and ambient oxygen deficiency due to acquisition limitations, such as the Open resulting in property damage and personal injury. The purpose of this study is to analyze the existing system with respect to the address of the underground shopping center and system for presenting an address to the underground shopping mall in the basement of the straight and circular in connection with the street name address. Also can be known only to evacuate their citizens to address the position in the event of a fire inside the basement through the underground shopping mall address standardization system, the fire department only address exact location is being judged will be identified.

Effect of Cross-flow Velocity and TMP on Membrane Fouling in Thermophilic Anaerobic Membrane Bioreactor Treating Food Waste Leachate (음식물 침출수를 처리하는 막결합 고온혐기성 소화시스템에서 교차여과와 막간압력이 파울링에 미치는 영향)

  • Kim, Young-O;Jun, Duk-Woo;Yoon, Seong-Kyu;Chang, Chung-Hee;Bae, Jae-Ho;Yoo, Kwan-Sun;Kim, Jeong-Hwan
    • Membrane Journal
    • /
    • v.21 no.4
    • /
    • pp.360-366
    • /
    • 2011
  • The effect of cross-flow velocity and transmembrane pressure (TMP) on membrane fouling was observed from pilot-scale operation of thermophilic anaerobic membrane bioreactor (AnMBR) treating food waste leachate. It was found that fouling rate was reduced significantly as cross-flow velocity increased at constant TMP mode of operation while this effectiveness was more pronounced at lower TMP. Higher TMP resulted in less permeable fouling layer possibly due to compressibility of foulant material on membrane surface. Particle sizes of membrane concentrate ranged from 10 to $100{\mu}m$, implying that shear-induced diffusion enhance back transport of these particle sizes away from the membrane effectively. From the continuous operation of AnMBR, it was confirmed that shear rate played an important role in the reduction of membrane fouling. Membrane autopsy works at the end of operation of AnMBR showed clearly that both organic and inorganic fouling were significant on membrane surface. Surface shear by cross-flow velocity was expected to be less effective to remove irreversible fouling which can be mainly caused by the adsorption of organic colloidal materials into membrane pores.

A Study on Corrosion Properties of Reinforced Concrete Structures in Subsurface Environment (지중 환경하에서의 철근콘크리트 구조물의 부식 특성 연구)

  • Kwon, Ki-jung;Jung, Haeryong;Park, Joo-Wan
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.79-85
    • /
    • 2016
  • A concrete silo plays an important role in subsurface low- and intermediate-level waste facilities (LILW) by limiting the release of radionuclides from the silo geosphere. However, due to several physical and chemical processes the performance of the concrete structure decreases over time and consequently the concrete loses its effectiveness as a barrier against groundwater inflow and the release of radionuclides. Although a number of processes are responsible for degradation of the silo concrete, it is determined that the main cause is corrosion of the reinforcing steel. Therefore, the time it takes for the silo concrete to fail is calculated based on two factors: the initiation time of corrosion, defined as the time it takes for chloride ions to penetrate through the concrete cover, and the propagation time of corrosion. This paper aims to estimate the time taken for concrete to fail in a LILW disposal facility. Based on the United States Department of Energy (DOE) approach, which indicates that concrete fails completely once 50% of the volume of the reinforcing steel corrodes, the corrosion propagation time is calculated to be 640 years, which is the time it takes for corrosion to penetrate 0.640 cm into the reinforcing steel. In addition to the corrosion propagation time, a diffusion equation is used to calculate the initiation time of corrosion, yielding a time of 1284 years, which post-dates the closure time of the LILW disposal facility if we also consider the 640 years of corrosion propagation. The electrochemical conditions of the passive rebar surface were modified using an acceleration method. This is a useful approach because it can reduce the test time significantly by accelerating the transport of chlorides. Using instrumental analysis, the physicochemical properties of corrosion products were determined, thereby confirming that corrosion occurred, although we did not observe significant cracks in, or expansion of, the concrete. These results are consistent with those of Smartet al., 2006 who reported that corrosion products are easily compressed, meaning that cracks cannot be discerned by eye. Therefore, it is worth noting that rebar corrosion does not strongly influence the hydraulic conductivity of the concrete.

Development of a Conjunctive Surface-Subsurface Flow Model for Use in Land Surface Models at a Large Scale: Part II. Model Implementation (대규모 육지수문모형에서 사용 가능한 지표면 및 지표하 연계 물흐름 모형의 개발: II. 모형적용)

  • Choi, Hyun-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.23-27
    • /
    • 2008
  • The new conjunctive surface-subsurface flow model at a large scale was developed by using a 1-D Diffusion Wave (DW) model for surface flow interacting with the 3-D Volume Averaged Soil-moisture Transport (VAST) model for subsurface flow for the comprehensive terrestrial water and energy predictions in Land Surface Models (LSMs). A selection of numerical implementation schemes is employed for each flow component. The 3-D VAST model is implemented using a time splitting scheme applying an explicit method for lateral flow after a fully implicit method for vertical flow. The 1-D DW model is then solved by MacCormack finite difference scheme. This new conjunctive flow model is substituted for the existing 1-D hydrologic scheme in Common Land Model (CLM), one of the state-of-the-art LSMs. The new conjunctive flow model coupled to CLM is tested for a study domain around the Ohio Valley. The simulation results show that the interaction between surface flow and subsurface flow associated with the flow routing scheme matches the runoff prediction with the observations more closely in the new coupled CLM simulations. This improved terrestrial hydrologic module will be coupled to the Climate extension of the next-generation Weather Research and Forecasting (CWRF) model for advanced regional, continental, and global hydroclimatological studies and the prevention of disasters caused by climate changes.