• 제목/요약/키워드: transport and diffusion

검색결과 728건 처리시간 0.03초

Pectin Micro- and Nano-capsules of Retinyl Palmitate as Cosmeceutical Carriers for Stabilized Skin Transport

  • Ro, Jieun;Kim, Yeongseok;Kim, Hyeongmin;Park, Kyunghee;Lee, Kwon-Eun;Khadka, Prakash;Yun, Gyiae;Park, Juhyun;Chang, Suk Tai;Lee, Jonghwi;Jeong, Ji Hoon;Lee, Jaehwi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권1호
    • /
    • pp.59-64
    • /
    • 2015
  • Retinyl palmitate (RP)-loaded pectinate micro- and nano-particles (PMP and PNP) were designed for stabilization of RP that is widely used as an anti-wrinkle agent in anti-aging cosmeceuticals. PMP/PNP were prepared with an ionotropic gelation method, and anti-oxidative activity of the particles was measured with a DPPH assay. The stability of RP in the particles along with pectin gel and ethanolic solution was then evaluated. In vitro release and skin permeation studies were performed using Franz diffusion cells. Distribution of RP in each skin tissue (stratum corneum, epidermis, and dermis) was also determined. PMP and PNP could be prepared with mean particle size diameters of $593{\sim}843{\mu}m$ (PMP) and 530 nm (i.e., $0.53{\mu}m$, PNP). Anti-oxidative activity of PNP was greater than PMP due largely to larger surface area available for PNP. The stability of RP in PMP and PNP was similar but much greater than RP in pectin bulk gels and ethanolic solution. PMP and PNP showed the abilities to constantly release RP and it could be permeated across the model artificial membrane and rat whole skin. RP was serially deposited throughout the skin layers. This study implies RP loaded PMP and PNP are expected to be advantageous for improved anti-wrinkle effects.

FIR과 FGR 기법이 적용된 메탄-공기 대향류 확산화염에서 화염구조와 NO 배출 연구 (A Study on Flame Structure and NO Emission in FIR- and FGR-applied Methane-air Counterflow Diffusion Flames)

  • 박정;권오붕;김세원;이창엽;길상인;윤진한;임인권
    • 한국연소학회지
    • /
    • 제21권1호
    • /
    • pp.38-45
    • /
    • 2016
  • Flame characteristics and NO emission behavior in $CH_4$/air-air premixed counterflow flames with applying FIR and FGR with $CO_2$ and $H_2O$ were investigated numerically by varying the ratios of FIR and FGR as well as global strain rate. Chemical effects of added $CO_2$ and $H_2O$ via FIR and FGR were analyzed through comparing flame characteristics and NO behaviors from real species($CO_2$ and $H_2O$) with those from their artificial species($XCO_2$ and $XH_2O$) which have the same thermochemical, radiative, and transport properties to those for the real species. The results showed that flame temperature and NO emission with FIR varied much more sensitively than that with FGR. Those varied little irrespective of adding $CO_2$, $H_2O$, and their artificial species to the fuel stream via FIR. However, Those were varied complicatedly by chemical effects of added $CO_2$ and $H_2O$ via FGR. Detailed analyses for them were made and discussed.

The effect of film morphology by bar-coating process for large area perovskite solar modules

  • Ju, Yeonkyeong;Kim, Byeong Jo;Lee, Sang Myeong;Yoon, Jungjin;Jung, Hyun Suk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.416-416
    • /
    • 2016
  • Organic-inorganic metal halide perovskite solar cells have received attention because it has a number of advantages with excellent light harvesting, high carrier mobility, and facile solution processability and also recorded recently power conversion efficiency (PCEs) of over 20%. The major issue on perovskite solar cells have been reached the limit of small area laboratory scale devices produced using fabrication techniques such as spin coating and physical vapor deposition which are incompatible with low-cost and large area fabrication of perovskite solar cells using printing and coating techniques. To solution these problems, we have investigated the feasibility of achieving fully printable perovskite solar cells by the blade-coating technique. The blade-coating fabrication has been widely used to fabricate organic solar cells (OSCs) and is proven to be a simple, environment-friendly, and low-cost method for the solution-processed photovoltaic. Moreover, the film morphology control in the blade-coating method is much easier than the spray coating and roll-to-roll printing; high-quality photoactive layers with controllable thickness can be performed by using a precisely polished blade with low surface roughness and coating gap control between blade and coating substrate[1]. In order to fabricate perovskite devices with good efficiency, one of the main factors in printed electronic processing is the fabrication of thin films with controlled morphology, high surface coverage and minimum pinholes for high performance, printed thin film perovskite solar cells. Charge dissociation efficiency, charge transport and diffusion length of charge species are dependent on the crystallinity of the film [2]. We fabricated the printed perovskite solar cells with large area and flexible by the bar-coating. The morphology of printed film could be closely related with the condition of the bar-coating technique such as coating speed, concentration and amount of solution, drying condition, and suitable film thickness was also studied by using the optical analysis with SEM. Electrical performance of printed devices is gives hysteresis and efficiency distribution.

  • PDF

원형관 코팅장치에서 연소 입자의 응축성장에 미치는 2차원 열 및 물질전달의 영향 (Effects of Two-dimensional Heat and Mass Transports on Condensational Growth of Soot Particles in a Tubular Coater)

  • 박성훈
    • 한국입자에어로졸학회지
    • /
    • 제9권3호
    • /
    • pp.163-171
    • /
    • 2013
  • Soot particles emitted from combustion processes are often coated by non-absorbing organic materials, which enhance the global warming effect of soot particles. It is of importance to study the condensation characteristics of soot particles experimentally and theoretically to reduce the uncertainty of the climate impact of soot particles. In this study, the condensational growth of soot particles in a tubular coater was modeled by a one-dimensional (1D) plug flow model and a two-dimensional (2D) laminar flow model. The effects of 2D heat and mass transports on the predicted particle growth were investigated. The temperature and coating material vapor concentration distributions in radial direction, which the 1D model could not accounted for, affected substantially the particle growth in the coater. Under the simulated conditions, the differences between the temperatures and vapor concentrations near the wall and at the tube center were large. The neglect of these variations by the 1D model resulted in a large error in modeling the mass transfer and aerosol dynamics occurring in the coater. The 1D model predicted the average temperature and vapor concentration quite accurately but overestimated the average diameter of the growing particles considerably. At the outermost grid, at which condensation begins earliest due to the lowest temperature and saturation vapor concentration, condensing vapor was exhausted rapidly because of the competition between condensations on the wall and on the particle surface, decreasing the growth rate. At the center of the tube, on the other hand, the growth rate was low due to high temperature and saturation vapor concentration. The effects of Brownian diffusion and thermophoresis were not high enough to transport the coating material vapor quickly from the tube center to the wall. The 1D model based on perfect radial mixing could not take into account this phenomenon, resulting in a much higher growth rate than what the 2D model predicted. The result of this study indicates that contrary to a previous report for a thermodenuder, 2D heat and mass transports must be taken into account to model accurately the condensational particle growth in a coater.

Bioavailability of Fermented Korean Red Ginseng

  • Lee, Hyun-Jung;Jung, Eun-Young;Lee, Hyun-Sun;Kim, Bong-Gwan;Kim, Jeong-Hoon;Yoon, Taek-Joon;Oh, Sung-Hoon;Suh, Hyung-Joo
    • Preventive Nutrition and Food Science
    • /
    • 제14권3호
    • /
    • pp.201-207
    • /
    • 2009
  • In an effort to improve ginsenoside bioavailability, the ginsenosides of fermented red ginseng were examined with respect to bioavailability and physiological activity. The results showed that the fermented red ginseng (FRG) had a high level of ginsenoside metabolites. The total ginsenoside contents in non-fermented red ginseng (NFRG) and FRG were 35715.2 ${\mu}g$/mL and 34822.9 ${\mu}g$/mL, respectively. However, RFG had a higher content (14914.3 ${\mu}g$/mL) of ginsenoside metabolites (Rg3, Rg5, Rk1, CK, Rh1, F2, and Rg2) compared to NFRG (5697.9 ${\mu}g$/mL). The skin permeability of RFG was higher than that of NFRG using Franz diffusion cells. Particularly, after 5 hr, the skin permeability of RFG was significantly (p<0.05) higher than that of NFRG. Using everted instestinal sacs of rats, RFG showed a high transport level (10.3 mg of polyphenols/g sac) compared to NFRG (6.67 of mg of polyphenols/g sac) after 1 hr. After oral administration of NFRG and FRG to rats, serum concentrations were determined by HPLC. Peak concentrations of Rk1, Rh1, Rc, and Rg5 were approximately 1.64, 2.35, 1.13, and 1.25-fold higher, respectively, for FRG than for NFRG. Furthermore, Rk1, Rh1, and Rg5 increased more rapidly in the blood by the oral administration of FRG versus NFRG. FRG had dramatically improved bioavailability compared to NFRG as indicated by skin permeation, intestinal permeability, and ginsenoside levels in the blood. The significantly greater bioavailability of FRG may have been due to the transformation of its ginsenosides by fermentation to more easily absorbable forms (ginsenoside metabolites).

Effects of Electrostatic Discharge Stress on Current-Voltage and Reverse Recovery Time of Fast Power Diode

  • Bouangeune, Daoheung;Choi, Sang-Sik;Cho, Deok-Ho;Shim, Kyu-Hwan;Chang, Sung-Yong;Leem, See-Jong;Choi, Chel-Jong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권4호
    • /
    • pp.495-502
    • /
    • 2014
  • Fast recovery diodes (FRDs) were developed using the $p^{{+}{+}}/n^-/n^{{+}{+}}$ epitaxial layers grown by low temperature epitaxy technology. We investigated the effect of electrostatic discharge (ESD) stresses on their electrical and switching properties using current-voltage (I-V) and reverse recovery time analyses. The FRDs presented a high breakdown voltage, >450 V, and a low reverse leakage current, < $10^{-9}$ A. From the temperature dependence of thermal activation energy, the reverse leakage current was dominated by thermal generation-recombination and diffusion, respectively, at low and high temperature regions. By virtue of the abrupt junction and the Pt drive-in for the controlling of carrier lifetime, the soft reverse recovery behavior could be obtained along with a well-controlled reverse recovery time of 21.12 ns. The FRDs exhibited excellent ESD robustness with negligible degradations in the I-V and the reverse recovery characteristics up to ${\pm}5.5$ kV of HBM and ${\pm}3.5$ kV of IEC61000-4-2 shocks. Likewise, transmission line pulse (TLP) analysis reveals that the FRDs can handle the maximum peak pulse current, $I_{pp,max}$, up to 30 A in the forward mode and down to - 24 A in the reverse mode. The robust ESD property can improve the long term reliability of various power applications such as automobile and switching mode power supply.

Characterization of Methanol Crossover through Nafion Membranes by Direct Cell Performance Measurement

  • Park, Kyung-Won;Kim, Young-Min;Kwon, Bu-kil;Choi, Jong-Ho;Park, In-Su;Sung, Yung-Eun
    • 전기화학회지
    • /
    • 제5권4호
    • /
    • pp.226-231
    • /
    • 2002
  • Power densities produced by the permeation of methanol through membranes were directly measured by inserting the membrane in front of anode in a membrane-electrode-assembly of a direct methanol fuel cell (DMFC). The power density was closely related to the loss of power in the DMFC and was strongly affected by temperature. As the cell temperature was increased, the power density resulting from methanol crossover was increased. The increase in methanol crossover had be attributed to diffusion caused or affected by temperature. Methanol crossover a major effect on the performance of a DMFC at a relatively low temperature with $26\%\;loss\;at\;30^{\circ}C$. In order to reduce methanol crossover, a conventional Nafion membrane was modified by the incorporation of Pt or Pd. The reduction in methanol crossover was investigated in these modified membranes by our cell performance measurement. Pt and Pd particles incorporated in the Nafion membranes block methanol pathway and prevent methanol transport through the membranes, which was proved by combining with liquid chromatography.

주상모사실험을 이용한 구룡광산 광미 내 원소의 이동성 (Mobility of Metals in Tailings using a Column Experiment from the Guryong Copper Mine)

  • 문용희;송윤구;문희수;장용선
    • 한국토양비료학회지
    • /
    • 제43권3호
    • /
    • pp.275-282
    • /
    • 2010
  • The laboratory column experiments were used to transport of metal elements by infiltration-related dispersion and/or diffusion in mine tailing of the Guryong gold mine. The mine tailing shows the neutral pH (for a pore water) and contains quartz, chlorite, pyrite and calcite. Both a non-reactive solute ($Cl^-$ of 100 mg $L^{-1}$) and a reactive solute (1N HCl), were injected continuously through columns. The breakthrough curve in the non-reactive experiment reached at a maximum under 1.5 pore volumes (PV). The longitudinal dispersion (0.607 cm) and hydrodynamic dispersion coefficient ($1.96{\times}10^{-7}cm^{2}sec^{-1}$) were calculated by the slope. In the reactive experiment, the plateau curve was appeared in the pH values of 5.3, 4.5 and 1.7. The releases of metal elements such as Fe, Mn, Al, Cu, Zn, Pb, and Cd were observed to be related to the pH buffering. High concentrations of Mn, Cd and Zn were observed at the first pH plateau (4 PV and pH 5.3), whereas Fe, Cu, Al and Pb were released as the pH decreased to 4.0 or less. The resulting order of metals mobility, based on the effluent water, is Mn=Cd>Zn>Cu>Fe>Al>Pb.

GDL을 고려한 고분자전해질형 연료전지 모사 단위 유로 채널에서의 물방울 유동 특성에 대한 실험적인 고찰 (Experimental Investigation of the Water Droplet Dynamics inside the Simulated PEMFC Single Flow Channel with GDL)

  • 김한상;지용휘;인지헌;안지용
    • 한국수소및신에너지학회논문집
    • /
    • 제24권1호
    • /
    • pp.76-83
    • /
    • 2013
  • Polymer electrolyte membrane fuel cells (PEMFCs) are regarded as a promising alternative to replace the existing automotive power sources. To get high performance and long-term durability for PEMFC systems, novel water management is essential. To this end, a comprehensive understanding of dynamics of the liquid water droplets within an operating PEMFC plays an important role. In this work, direct visualization of dynamic behaviors of the water droplet in the ex situ unit flow channel of a PEMFC including gas diffusion layer (GDL) is carried out as one of the fundamental studies for novel water management. Water droplet dynamics such as the movement and growth of liquid water droplets are mainly presented. Effects of GDL characteristics and inlet air flow rate on the water droplet transport and its removal from the flow channel are also discussed. The data obtained in this study can contribute to build up the fundamental operating strategy including balanced water removal capacity for automotive PEMFC systems.

유기트랜지스터 내부 편재화 준위간 커플링에 의한 계면 전하이동의 비선형적 가속화 현상의 이해 (Understanding Interfacial Charge Transfer Nonlinearly Boosted by Localized States Coupling in Organic Transistors)

  • 한송연;김수진;최현호
    • 접착 및 계면
    • /
    • 제22권4호
    • /
    • pp.144-152
    • /
    • 2021
  • 유기반도체와 게이트 절연체 간 계면전하이동을 이해하는 것은 고성능 유기메모리, 고안정성 유기전계효과 트랜지스터 (이하 유기트랜지스터) 개발에 기여할 수 있다. 본 연구에서는 계면 간 전하이동의 특이거동, 즉 홀전하가 유기반도체에서 고분자절연체로 이동되어 편재화되는 것이 편재화 준위간의 커플링에 의해 비선형적으로 가속화될 수 있음을 최초로 밝혀내었다. 이의 규명을 위해 rubrene 단결정과 Mylar 절연체를 기반으로 한 유기트랜지스터를 vacuum lamination 공정으로 제작하여 반도체-절연체 계면의 반복적인 전사와 박리에도 안정적인 소자를 개발하였다. Rubrene 단결정과 Mylar film의 표면을 각각 광유도 산소 확산법과 UV-오존 처리를 통해 결함을 생성시켰다. 그 결과, 계면 간 전하이동과 이에 의한 바이어스 스트레스 효과가 rubrene과 Mylar가 가진 편재화 준위 간 커플링에 의해 비선형적으로 급격하게 가속화되었음을 관측하였다. 특히, rubrene 단결정에 있는 적은 밀도의 편재화 준위가 계면 간 전하이동을 촉진하는데 가교역할을 함을 밝혀내었다