• Title/Summary/Keyword: transport and diffusion

Search Result 728, Processing Time 0.021 seconds

Analysis on the Mean energy of electrons in $SF_6-Ar$ Mixtures Gas used by MCS-BEq Algorithm ($SF_6-Ar$ 혼합기체(混合氣體)의 MCS-BEq알고리즘에 의한 전자(電子) 평균(平均)에너지 해석(解析))

  • Kim, Sang-Nam;Ha, Sung-Chul
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.281-284
    • /
    • 2004
  • Mean energy of electrons in $SF_6-Ar$ Mixtures Gas used by MCS-BEq algorithm has been analysed over the E/N range $30{\sim}300[Td]$ by a two term Boltzmann equation and by a Monte Carlo Simulation using a set of electron cross sections determined by other authors, experimentally the electron swarm parameters for 0.2[%] and 0.5[%] $SF_6-Ar$, 0.1[%] and 5.0[%], $SF_6-Ar$ mixtures were measured by time-of-flight(TOF) method. The transport Coefficients for electrons in (100[%])$SF_6$. (100[%])Ar, (0.2[%])$SF_6-Ar$ and (0.5[%]) $SF_6-Ar$, (5.0[%]) $SF_6-Ar$, (0.1[%])$SF_6-Ar$ mixtures were measured by time-of-flight method, and the electron energy distribution function and the parameters of the velocity and the diffusion were determined by the variation of the collision cross-sections with energy. The results obtained from Boltzmann equation method and Monte Carlo simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of the molecules.

  • PDF

The Behavior of Effluent Discharged from the Confined Dumping Facility (제한투기시설에서 배출되는 여수의 거동)

  • 정대득;이중우
    • Journal of Korean Port Research
    • /
    • v.14 no.4
    • /
    • pp.429-439
    • /
    • 2000
  • The primary purpose of dredging work is to maintain navigational readiness and to increase environmental amenity. Therefore the dredging project, which is composed of excavating, removing, transporting and storing or dumping dredged material, must be carefully managed to insure that dredging works are completed in a cost-effective and environmentally safe method. The most important point in dumping operations is evaluating and decreasing the impacts of dumping works at the dumping area. One of the most effective method for this purpose is using the schematic process composed of the sophisticate plan, precise work and predicting/reducing the impacts based on an numerical model being closely linked with field observation. In this study, a numerical model is used to predict the spatial transport and fate of the effluent discharged from the confined dumping facility(CDF) located at a coastal area. To achive this purpose, numerical models were used for reappearing the tidal current of concerned area. These models were then applied to Mokpo harbpr where capital dredging and maintenance dredging are being conducted simultaneously and the CDF is under construction. In series of model case study, we found that the effluent discharged from CDF was governed by the receiving water condition and outfall geometry, so that limit of near-field was 14∼500 meter down stream and 4∼150 meter in transverse direction. dilution ranged from 1.1 to 8.2 on the cases. Long-term diffusion characteristics was governed by the dilution rate during near-field behavior, ambient conditions and CDF operation modes.

  • PDF

Growth of superconducting $MgB_2$ fibers for wire applications

  • Kim J. H.;Yoon H. R.;Jo W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.4
    • /
    • pp.1-3
    • /
    • 2005
  • Superconducting $MgB_2$ fibers are in-situ grown by a diffusion method. The fibers are prepared by exposing B filaments to Mg vapor inside a folded Ta foil over a wide range of temperature and growth time. The materials are sealed inside a quartz tube by gas welding. The as - grown fibers are characterized by scanning electron microscopy and energy dispersive x - ray analysis. The fibers have a diameter of about $110{\mu}m$. Surface morphology of the fibers looks dependent on growth temperature and mixing ratio of Mg and B. Radial distribution of Mg ions into B is observed and analyzed over the cross - sectional area. Transport properties of the $MgB_2$ fibers are examined by a physical property measurement system. The $MgB_2$ fibers grown at $900^{\circ}C$ for 2 hours show a superconducting transition at 39.8K with ${\Delta}T_c<$ 2.0 K. Resistance at room temperature $MgB_2$ is 3.745 $\Omega$ and residual resistivity ratio (RRR) is estimated as 4.723.

EFFECT OF FLOW UNSTEADINESS ON DISPERSION IN NON-NEWTONIAN FLUID IN AN ANNULUS

  • NAGARANI, P.;SEBASTIAN, B.T.
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.3_4
    • /
    • pp.241-260
    • /
    • 2017
  • An analysis is made to study the solute transport in a Casson fluid flow through an annulus in presence of oscillatory flow field and determine how this flow influence the solute dispersion along the annular region. Axial dispersion coefficient and the mean concentration expressions are calculated using the generalized dispersion model. Dispersion coefficient in oscillatory flow is found to be a function of frequency parameter, Schmidt number, and the pressure fluctuation component besides its dependency on yield stress of the fluid, annular gap and time in the case of steady flow. Due to the oscillatory nature of the flow, the dispersion coefficient changes cyclically and the amplitude and magnitude of the dispersion increases initially with time and reaches a non - transient state after a certain critical time. This critical value varies with frequency parameter and independent of the other parameters. It is found that the presence of inner cylinder and increase in the size of the inner cylinder inhibits the dispersion process. This model may be used in understanding the dispersion phenomenon in cardiovascular flows and in particular in catheterized arteries.

Performance-based Evaluation for Efficiency of Landfill Liner Systems

  • Nguyen, The Bao;Lee, Chul-Ho;Lee, Jong-Sun;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.245-254
    • /
    • 2009
  • Efficiency of landfill liners system is usually evaluated based on leakage rate and mass flux. In this study, composite liner systems including the GCL(geosynthetic clay liner) composite liner, the Subtitle D liner, the Wisconsin NR500 liner, and the recently utilized double composite liner, which is a combination of the GCL composite liner and Subtitle D-type liner, have been examined. The leakage rate through circular and long defects in the geomembrane (GM) of the liner system was analyzed with the aids of analytical and numerical methods. For the mass flux criterion, contaminant transport through defects in the GM of landfill liners can be evaluated based on the calculated leakage rates. The diffusion rate of volatile organic compounds through intact landfill liners was evaluated by performing a one-dimensional numerical model. Cadmium and toluene were adoptted in the analyses as typical inorganic and organic substances, respectively, which will be chemical species encountered during landfill operation. The performance-based evaluation indicates that the double composite liner systems are superior to the other types of liner.

  • PDF

A Study on the Improvement of Korean Logistics Policies (우리나라 물류비 절감을 위한 물류정책의 효율성 제고방안에 관한 연구)

  • Park, Kwang-So;Yu, Kwang-Hyun
    • THE INTERNATIONAL COMMERCE & LAW REVIEW
    • /
    • v.45
    • /
    • pp.139-163
    • /
    • 2010
  • Companies make a great effort for saving costs because a rise in logistics costs weaken trade companies competitive position in the international market. Therefore it is important for companies and government to enhance logistics competitive. This article focus on the logistics laws and policies to improvement companies competitiveness and save logistics costs. It has researched from the point of view rather government basis than company basis. Korean Logistics policies have some fundamental problems that the law and policies are spreaded to several administrations such as, Ministry of Knowledge Economy, Ministry of Land, Transport and Maritime Affairs etc. We propose the solutions as follows; First of all, we review the laws and policies on logistics and point out the problems. Second, setting up the principle of Korean Logistics Policies according to the changes in international logistics paradigm and circumstances. Third, adjustment of systems and tasks of administrations related to logistics. Fourth, innovation plan for logistics policies. The plan can carry out two ways demonstration business and diffusion business in order.

  • PDF

Characteristics of the Ionospheric Mid-Latitude Trough Measured by Topside Sounders in 1960-70s

  • Hong, Junseok;Kim, Yong Ha;Lee, Young-Sook
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.121-131
    • /
    • 2019
  • The ionospheric mid-latitude trough (IMT) is the electron density depletion phenomenon in the F region during nighttime. It has been suggested that the IMT is the result of complex plasma processes coupled to the magnetosphere. In order to statistically investigate the characteristics of the IMT, we analyze topside sounding data from Alouette and ISIS satellites in 1960s and 1970s. The IMT position is almost constant for seasons and solar activities whereas the IMT depth ratio and the IMT feature are stronger and clearer in the winter hemisphere under solar minimum condition. We also calculated transition heights at which the densities of oxygen ions and hydrogen/helium ions are equal. Transition heights are generally higher in daytime and lower in nighttime, but the opposite aspects are seen in the IMT region. Utilizing the Incoherent Scatter Radar (ISR) electron temperature measurements, we find that the electron temperature in the IMT region is enhanced at night during winter. The increase of electron temperature may cause fast transport of the ionospheric plasma to the magnetosphere via ambipolar diffusion, resulting in the IMT depletion. This mechanism of the IMT may work in addition to the simply prolonged recombination of ions proposed by the traditional stagnation model.

Static and transient analyses of Advanced Power Reactor 1400 (APR1400) initial core using open-source nodal core simulator KOMODO

  • Alnaqbi, Jwaher;Hartanto, Donny;Alnuaimi, Reem;Imron, Muhammad;Gillette, Victor
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.764-769
    • /
    • 2022
  • The United Arab Emirates is currently building and operating four units of the APR-1400 developed by a South Korean vendor, Korea Electric Power Corporation (KEPCO). This paper attempts to perform APR-1400 reactor core analysis by using the well-known two-step method. The two-step method was applied to the APR-1400 first cycle using the open-source nodal diffusion code, KOMODO. In this study, the group constants were generated using CASMO-4 fuel transport lattice code. The simulation was performed in Hot Zero Power (HZP) at steady-state and transient conditions. Some typical parameters necessary for the Nuclear Design Report (NDR) were evaluated in this paper, such as effective neutron multiplication factor, control rod worth, and critical boron concentration for steady-state analysis. Other parameters such as reactivity insertion, power, and fuel temperature changes during the Reactivity Insertion Accident (RIA) simulation were evaluated as well. The results from KOMODO were verified using PARCS and SIMULATE-3 nodal core simulators. It was found that KOMODO gives an excellent agreement.

Study on Adsorption Characteristics of Perfluorinated Compounds(PFCs) with Structural Properties (과불화화합물 구조적 속성에 따른 흡착 특성 연구)

  • Choi, HyoJung;Kim, Deok Hyun;Yoon, JongHyun;Kwon, JongBeom;Kim, Moonsu;Kim, Hyun-Koo;Shin, Sun-Kyoung;Park, Sunhwa
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.5
    • /
    • pp.20-28
    • /
    • 2021
  • Perfluorinated compounds(PFCs), an emerging environmental pollutant, are environmentally persistent and bioaccumulative organic compounds that possess a toxic impact on human health and ecosystems. PFCs are distributed widely in environment media including groundwater, surface water, soil and sediment. PFCs in contaminated solid can potentially leach into groundwater. Therefore, understanding PFCs partitioning between the aqueous phase and solid phase is important for the determination of their fate and transport in the environment. In this study, the sorption equilibrium batch and kinetic experiment of PFCs were carried out to estimated the sorption coefficient(Kd) and the fraction between aqueous-solid phase partition, respectively. Sorption branches of the PFDA(Perfluoro-n-decanoic acid), PFNA(Perfluoro-n-nonanoic acid), PFOA(Perfluoro-n-octanoic acid), PFOS(Perfluoro-1-octane sulfonic acid) and PFHxS(Perfluoro-1-hexane sulfonic acid) isotherms were nearly linear, and the estimated Kd was as follow: PFDA(1.50) > PFOS(1.49) > PFNA(0.81) > PFHxS(0.45) > PFOA(0.39). The sorption kinetics of PFDA, PFNA, PFOA, PFOS and PFHxS onto soil were described by a biexponential adsorption model, suggesting that a fast transport into the surface layer of soil, followed by two-step diffusion transport into the internal water and/or organic matter of soil. Shorter times(<20hr) were required to achieve equilibrium and fraction for adsorption on solid(F1, F2) increased with perfluorinated carbon chain length and sulfonate compounds in this study. Overall, our results suggested that not only the perfluorocarbon chain length, but also the terminal functional groups are important contributors to electrostatic and hydrophobic interactions between PFCs and soils, and organic matter in soils significantly affects adsorption maximum capacity than kinetic rate.

Heat and mass transfer analysis in air gap membrane distillation process for desalination

  • Pangarkar, Bhausaheb L.;Sane, Mukund G.
    • Membrane and Water Treatment
    • /
    • v.2 no.3
    • /
    • pp.159-173
    • /
    • 2011
  • The air gap membrane distillation (AGMD) process was applied for water desalination. The main objective of the present work was to study the heat and mass transfer mechanism of the process. The experiments were performed on a flat sheet module using aqueous NaCl solutions as a feed. The membrane employed was hydrophobic PTFE of pore size 0.22 ${\mu}m$. A mathematical model is proposed to evaluate the membrane mass transfer coefficient, thermal boundary layers' heat transfer coefficients, membrane / liquid interface temperatures and the temperature polarization coefficients. The mass transfer model was validated by the experimentally and fitted well with the combined Knudsen and molecular diffusion mechanism. The mass transfer coefficient increased with an increase in feed bulk temperature. The experimental parameters such as, feed temperature, 313 to 333 K, feed velocity, 0.8 to 1.8 m/s (turbulent flow region) were analyzed. The permeation fluxes increased with feed temperature and velocity. The effect of feed bulk temperature on the boundary layers' heat transfer coefficients was shown and fairly discussed. The temperature polarization coefficient increased with feed velocity and decreased with temperature. The values obtained were 0.56 to 0.82, indicating the effective heat transfer of the system. The fouling was observed during the 90 h experimental run in the application of natural ground water and seawater. The time dependent fouling resistance can be added in the total transport resistance.