DOI QR코드

DOI QR Code

Characteristics of the Ionospheric Mid-Latitude Trough Measured by Topside Sounders in 1960-70s

  • Hong, Junseok (Department of Astronomy, Space Science and Geology, Chungnam National University) ;
  • Kim, Yong Ha (Department of Astronomy, Space Science and Geology, Chungnam National University) ;
  • Lee, Young-Sook (Department of Astronomy, Space Science and Geology, Chungnam National University)
  • Received : 2019.07.31
  • Accepted : 2019.08.17
  • Published : 2019.09.15

Abstract

The ionospheric mid-latitude trough (IMT) is the electron density depletion phenomenon in the F region during nighttime. It has been suggested that the IMT is the result of complex plasma processes coupled to the magnetosphere. In order to statistically investigate the characteristics of the IMT, we analyze topside sounding data from Alouette and ISIS satellites in 1960s and 1970s. The IMT position is almost constant for seasons and solar activities whereas the IMT depth ratio and the IMT feature are stronger and clearer in the winter hemisphere under solar minimum condition. We also calculated transition heights at which the densities of oxygen ions and hydrogen/helium ions are equal. Transition heights are generally higher in daytime and lower in nighttime, but the opposite aspects are seen in the IMT region. Utilizing the Incoherent Scatter Radar (ISR) electron temperature measurements, we find that the electron temperature in the IMT region is enhanced at night during winter. The increase of electron temperature may cause fast transport of the ionospheric plasma to the magnetosphere via ambipolar diffusion, resulting in the IMT depletion. This mechanism of the IMT may work in addition to the simply prolonged recombination of ions proposed by the traditional stagnation model.

Keywords

References

  1. Brinton HC, Grebowsky JM, Mayr HG, Altitude variation of ion composition in the midlatitude trough region: Evidence for upward plasma flow, J. Geophys. Res. 76, 3738-3745 (1971). https://doi.org/10.1029/JA076i016p03738
  2. Chan KL, Colin L, Global electron density distributions from topside soundings, Proc. IEEE 57, 990-1004 (1969). https://doi.org/10.1109/PROC.1969.7143
  3. Chapman JH, Warren ES, Topside sounding of the Earth's ionosphere, Space Sci. Rev. 8, 846-865 (1968). https://doi.org/10.1007/BF00175119
  4. Heelis RA, Coley WR, Burrell AG, Hairston MR, Earle GD, et al., Behavior of the $O^+$/$H^+$ transition height during the extreme solar minimum of 2008, Geophys. Res. Lett. 36, L00C03 (2009). https://doi.org/10.1029/2009GL038652
  5. Hong J, Kim YH, Chung JK, Ssessanga N, Kwak YS, Tomography reconstruction of ionospheric electron density with empirical orthonormal functions using Korea GNSS Network, J. Astron. Space Sci. 34, 7-17 (2017). https://doi.org/10.5140/JASS.2017.34.1.7
  6. Jackson JE, Warren ES, Objectives, history, and principal achievements of the topside sounder and ISIS programs, Proc. IEEE 57, 861-865 (1969). https://doi.org/10.1109/PROC.1969.7130
  7. Kersley L, Pryse SE, Walker IK, Heaton JAT, Mitchell CN, et al., Imaging of electron density troughs by tomographic techniques, Radio Sci. 32, 1607-1621 (1997). https://doi.org/10.1029/97RS00310
  8. Kim VP, Hegai VV, Response of the midlatitude F2 layer to some strong geomagnetic storms during solar minimum as observed at four sites of the globe, J. Astron. Space Sci. 32, 297-304 (2015). https://doi.org/10.5140/JASS.2015.32.4.297
  9. Knudsen WC, Magnetospheric convection and the high-latitude F2 ionosphere, J. Geophys. Res. 79, 1046-1055 (1974). https://doi.org/10.1029/JA079i007p01046
  10. Kutiev I, Marinov P, Topside sounder model of scale height and transition height characteristics of the ionosphere, Adv. Space Res. 39, 759-766 (2007). https://doi.org/10.1016/j.asr.2006.06.013
  11. Kutiev I, Marinov P, Watanabe S, Model of topside ionosphere scale height based on topside sounder data, Adv. Space Res. 37, 943-950 (2006). https://doi.org/10.1016/j.asr.2005.11.021
  12. Lee HB, Kim YH, Kim E, Hong J, Kwak YS, Where does the plasmasphere begin? Revisit to topside ionospheric profiles in comparison with plasmaspheric TEC from Jason-1, J. Geophys. Res. 121, 10091-10102 (2016). https://doi.org/10.1002/2016JA022747
  13. Lee IT, Wang W, Liu JY, Chen CY, Lin CH, The ionospheric midlatitude trough observed by FORMOSAT-3/COSMIC during solar minimum, J. Geophys. Res. 116, A06311 (2011). https://doi.org/10.1029/2010JA015544
  14. Lee J, Lee E, Lee J, Kim KH, Seon J, et al., Variation of floating potential in the topside ionosphere observed by STSAT-1, J. Astron. Space Sci. 31, 311-315 (2014). https://doi.org/10.5140/JASS.2014.31.4.311
  15. Marinov P, Kutiev I, Watanabe S, Empirical model of $O^+$-$H^+$ transition height based on topside sounder data, Adv. Space Res. 34, 2021-2025 (2004). https://doi.org/10.1016/j.asr.2004.07.012
  16. Moffett RJ, Quegan S, The mid-latitude trough in the electron concentration of the ionospheric F-layer: a review of observations and modelling, J. Atmos. Terr. Phys. 45, 315-343 (1983). https://doi.org/10.1016/S0021-9169(83)80038-5
  17. Muldrew DB, F-layer ionization troughs deduced from Alouette data, J. Geophys. Res. 70, 2635-2650 (1965). https://doi.org/10.1029/JZ070i011p02635
  18. Park J, Kwak YS, Mun JC, Min KW, Vertical scale height of the topside ionosphere around the Korean peninsula: Estimates from ionosondes and the Swarm constellation, J. Astron. Space Sci. 32, 311-315 (2015). https://doi.org/10.5140/JASS.2015.32.4.311
  19. Pryse SE, Kersley L, Malan D, Bishop GJ, Parameterization of the main ionospheric trough in the European sector, Radio Sci. 41, RS5S14 (2006). https://doi.org/10.1029/2005RS003364
  20. Schunk RW, Nagy AF, Ionospheres: Physics, Plasma Physics, and Chemistry, 2nd ed. (Cambridge Univ. Press, Cambridge, 2009).
  21. Sharp GW, Midlatitude trough in the night ionosphere, J. Geophys. Res. 71, 1345-1356 (1966). https://doi.org/10.1029/JZ071i005p01345
  22. Shepherd SG, Altitude-adjusted corrected geomagnetic coordinates: Definition and functional approximations, J. Geophys. Res. 119, 7501-7521 (2014). https://doi.org/10.1002/2014JA020264
  23. Spiro RW, Heelis RA, Hanson WB, Ion convection and the formation of the mid-latitude F region ionization trough, J. Geophys. Res. 83, 4255-4264 (1978). https://doi.org/10.1029/JA083iA09p04255
  24. Yang N, Le H, Liu L, Statistical analysis of ionospheric midlatitude trough over the Northern Hemisphere derived from GPS total electron content data, Earth, Planets Space, 67, 196 (2015). https://doi.org/10.1186/s40623-015-0365-1
  25. Yizengaw E, Wei H, Moldwin MB, Galvan D, Mandrake L, et al., The correlation between mid-latitude trough and the plasmapause, Geophys. Res. Lett. 32, L10102 (2005). https:// doi.org/10.1029/2005GL022954