• Title/Summary/Keyword: transparent semiconductor

Search Result 238, Processing Time 0.022 seconds

Properties of Ge,Ga and Ga-doped ZnO thin films prepared by RF magnetron sputtering (RF magnetron sputtering으로 생성한 Ga,Ge와 Ga이 도핑된 ZnO 박막의 특성)

  • Jung, Il-Hyun;Kim, Yu-Jin;Park, Jung-Yoon;Lee, Ru-Da
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.3
    • /
    • pp.41-45
    • /
    • 2010
  • The ZnO thin films doped with Ga(GZO) and both Ga and Ge(GZO:Ge) were deposited on glass substrate by using RF sputtering system respectively. Structural, morphological and optical properties of the films deposited in the same condition were investigated. Structural properties of the films were investigated by Field Emission Scanning Electron Microscopy, FE-SEM images and X-ray diffraction, XRD analysis. These studies showed shape of films' surface and direction of film growth respectively. It's showed that all films were deposited by vertical orientation strongly. It can be confirmed that all dopants of targets were included in deposited films by results of EDX analysis. UV-Vis spectrometer results showed that all samples had highly transparent characteristics in visible region and have similar 3.28~3.31 eV band gap. It was found that existence of all dopants by EDX analysis. Morphology and roughness of surface of each film were clearly shown by Atomic Force Microscopy, AFM images. It was found in this research that film doped with Ge more dense and stable with hardly any difference in gap energy compared to ZnO films.

An Experimental Study on Wafer Demounting by Water Jet in a Waxless Silicon Wafer Mounting System

  • Kim, Kyoung-Jin;Kwak, Ho-Sang;Park, Kyoung-Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.2
    • /
    • pp.31-35
    • /
    • 2009
  • In the silicon wafer polishing process, the mounting stage of silicon wafer on the ceramic carrier block has been using the polishing template which utilizes the porous surface instead of traditional wax mounting method. Here in this article, the experimental study is carried out in order to study the wafer demounting by water jet and the effects of operating conditions such as the water jet flowrate and the number of water jet nozzles on the wafer demounting time. It is found that the measured wafer demounting time is inversely proportional to the water flowrate per nozzle, regardless of number of nozzles used; implying that the stagnation pressure by the water jet impingement is the dominant key factor. Additionally, by using the transparent disk instead of wafer, the air bubble formation and growth is observed under the disk, making the passage of water flow, and subsequently demounting the wafer from the porous pad.

  • PDF

Structural and Electrical Characteristics of MZO Thin Films Deposited at Different Substrate Temperature and Hydrogen Flow Rate (증착 온도 및 수소 유량에 따른 MZO 박막의 구조적 및 전기적 특성)

  • Lee, Jisu;Lee, Kyu Mann
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.6-11
    • /
    • 2018
  • In this study, we have studied the effect of substrate temperature and hydrogen flow rate on the characteristics of MZO thin films for the TCO(Transparent conducting oxide). MZO thin films were deposited by RF magnetron sputtering at room temperature and $100^{\circ}C$ with various $H_2$ flow rate(1sccm~4sccm). In order to investigate the effect of hydrogen gas flow rate on the MZo thin film, we experimented with changing the hydrogen in argon mixing gas flow rate from 1.0sccm to 4.0sccm. MZO thin films deposited at room temperature and $100^{\circ}C$ show crystalline structure having (002), (103) preferential orientation. The electrical resistivity of the MZO films deposited at $100^{\circ}C$ was lower than that of the MZO film deposited at room temperature. The decrease of electrical resistivity with increasing substrate temperature was interpreted in terms of the increase of the charge carrier mobility and carrier concentration which seems to be due to the oxygen vacancy generated by the reducing atmosphere in the gas. The average transmittance of the MZO films deposited at room temperature and $100^{\circ}C$ with various hydrogen gas flow was more than 80%.

Removal of Post Etch/Ash Residue on an Aluminum Patterned Wafer Using Supercritical CO2 Mixtures with Co-solvents and Surfactants: the Removal of Post Etch/Ash Residue on an Aluminum Patterned Wafer

  • You, Seong-sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.55-60
    • /
    • 2017
  • The supercritical $CO_2$ (sc-$CO_2$) mixture and the sc-$CO_2$-based Photoresist(PR) stripping(SCPS) process were applied to the removal of the post etch/ash PR residue on aluminum patterned wafers and the results were observed by scanning of electron microscope(SEM). In the case of MDII wafers, the carbonized PR was able to be effectively removed without pre-stripping by oxygen plasma ashing by using sc-$CO_2$ mixture containing the optimum formulated additives at the proper pressure and temperature, and the same result was also able to be obtained in the case of HDII wafer. It was found that the efficiency of SCPS of ion implanted wafer improved as the temperature of SCPS was high, so a very large amount of MEA in the sc-$CO_2$ mixture could be reduced if the temperature could be increased at condition that a process permits, and the ion implanted photoresist(IIP) on the wafer was able to be removed completely without pre-treatment of plasma ashing by using the only 1 step SCPS process. By using SCPS process, PR polymers formed on sidewalls of metal conductive layers such as aluminum films, titanium and titanium nitride films by dry etching and ashing processes were removed effectively with the minimization of the corrosion of the metal conductive layers.

  • PDF

A Study on the Dependency of Pulsed-DC Sputtered Aluminum-doped Zinc Oxide Thin Films on the Reverse Pulse Time (Pulsed-DC 스퍼터링에서 Reverse Pulse Time에 따른 AZO 박막의 특성 변화에 관한 연구)

  • Ryu, Hyungseok;Zhao, Zhenqian;Kwon, Sang Jik;Cho, Eou Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.32-36
    • /
    • 2018
  • For various oxygen($O_2$) to argon(Ar) gas ratio, aluminum-doped zinc oxide(AZO) films were deposited for 3 min at different duty ratio by changing reverse pulse times. As the duty ratio increased, the thickness of the AZO film decreased and the sheet resistance increased. It can be concluded that When sputtering AZO Thin film, oxygen interfered with sputtering. When the reverse time was increased, the thickness of AZO was proportional to the real sputtering time and decreased. From the optical transmittance and sheet resistance, it was possible to obtain a higher figure of merits of AZO at a lower reverse pulse time. Even at the short reversed pulse time, it can be concluded that the accumulated charges on the AZO target are completely cleared. At a lower reverse pulse time, pulsed-DC sputtering of AZO is expected to be used instead of DC sputtering in the deposition of transparent conductive oxide(TCO) films without any degradation in thickness and structural/electrical characteristics.

Effect of Substrate Temperature and Gas Flow Rate of Atmosphere Gases on Structural and Electrical Properties of AZO Thin Films (기판 온도와 분위기 가스에 따른 AZO 박막의 구조적 및 전기적 특성)

  • Hong, Kyoung Lim;Lee, Kyu Mann
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • We have investigated the effect of the substrate temperature and hydrogen flow rate on the characteristics of AZO thin films for the TCO (transparent conducting oxide). For this purpose, AZO thin films were deposited by RF magnetron sputtering at room temperature and 300℃ with various H2 flow rate. Experiments were carried out while varying the hydrogen gas flow rate from 0sccm to 5.0sccm in order to see how the hydrogen gas affects the AZO thin films. AZO thin films deposited at 300℃ showed amorphous structure, whereas IZO thin films deposited at room temperature showed crystalline structure having an (222) preferential orientation. The electrical resistivity of the AZO films deposited at 300℃ was 4.388×10-3Ωcm, the lowest value. As the hydrogen gas flow rate increased, the resistivity tended to decrease.

Effect of RF Power on the Structural, Optical and Electrical Properties of Amorphous InGaZnO Thin Films Prepared by RF Magnetron Sputtering (RF 마그네트론 스퍼터링으로 증착한 비정질 InGaZnO 박막의 구조적, 광학적, 전기적 특성에 미치는 RF 파워의 영향)

  • Shin, Ji-Hoon;Cho, Young-Je;Choi, Duck-Kyun
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.38-43
    • /
    • 2009
  • To investigate the effect of RF power on the structural, optical and electrical properties of amorphous InGaZnO (a-IGZO), its thin films and TFTs were prepared by RF magnetron sputtering method with different RF power conditions of 40, 80 and 120 W at room temperature. In this study, as RF power during the deposition process increases, the RMS roughness of a-IGZO films increased from 0.26 nm to 1.09 nm, while the optical band-gap decreased from 3.28 eV to 3.04 eV. In the case of the electrical characteristics of a-IGZO TFTs, the saturation mobility increased from $7.3cm^2/Vs$ to $17.0cm^2/Vs$, but the threshold voltage decreased from 5.9 V to 3.9 V with increasing RF power. It is regarded that the increment of RF power increases the carrier concentration of the a-IGZO semiconductor layer due to the higher generation of oxygen vacancies.

Effect of Substrate Temperature and Hydrogen Ambient Gases on the Structural and Electrical Characteristics of IGZO Thin Films (기판온도 및 수소 분위기 가스에 따른 IGZO 투명전도성박막의 구조적 및 전기적 특성)

  • Bae, Jang Ho;Lee, Kyu Mann
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.12-16
    • /
    • 2022
  • We have investigated the effect of the substrate temperature and hydrogen flow rate on the characteristics of IGZO thin films for the TCO (transparent conducting oxide). For this purpose, IGZO thin films were deposited by RF magnetron sputtering at room temperature and 300℃ with various H2 flow rate. Experiments were carried out while varying the hydrogen gas flow rate from 0sccm to 1.0sccm in order to see how the hydrogen gas affects the IGZO thin films. IGZO thin films deposited at room temperature and 300℃ showed amorphous. The lowest resistivity value was 0.379×10-5 Ωcm when the IGZO film was deposited at 300℃ and set up at 1.0sccm. As the oxygen vacancy rate increased, the resistivity intended to decrease. In conclusion, Oxygen vacancy affects the IGZO thin film's electrical characteristic.

Study on Fluid Distribution in Slot-die Head Using CFD (CFD를 이용한 슬롯 다이 헤드 내부의 유체 분포 분석)

  • Yoo, Suho;Kim, Gieun;Shin, Youngkyun;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.39-44
    • /
    • 2022
  • Using a CFD (computational fluid dynamics) simulation tool, we have offered a design guideline of a slot-die head having a simple T-shaped cavity through an analysis of the fluid dynamics in terms of cavity pressure and outlet velocity, which affect the uniformity of coated thin films. We have visualized the fluid flow with a transparent slot-die head where poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) is injected. We have shown that the fluid dynamics inside the slot-die head depends sensitively on the cavity depth, cavity length, land length, and channel gap (i.e., shim thickness). Of those, the channel gap is the most critical parameter that determines the uniformity of the pressure and velocity distributions. A pressure drop inside the cavity is shown to be reduced with decreasing shim thickness. To quantify it, we have also calculated the coefficient of variation (CV). In accordance with Hagen-Poiseuille's laws and electron-hydraulic analogy, the CV value is decreased with increasing cavity depth, cavity length, and land length.

Effect of Substrate Temperature and Oxygen Ambient Gases on the Structural and Electrical Characteristics of IGZO Thin Films (기판온도 및 산소 분위기 가스에 따른 IGZO 투명전도성박막의 구조적 및 전기적 특성)

  • Jong Hyun Lee;Kyu Mann Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.96-100
    • /
    • 2023
  • We have investigated the effect of the substrate temperature and oxygen flow rate on the characteristics of IGZO thin films for the TCO (transparent conducting oxide). For this purpose, IGZO thin films were deposited by RF magnetron sputtering at room temperature and 300℃ with various O2 flow rate. Experiments were carried out while varying the oxygen gas flow rate from 0sccm to 1.0sccm to see how the oxygen gas affects the IGZO thin films. IGZO thin films deposited at room temperature and 300℃ showed amorphous. The lowest resistivity value was 2125x10-3 Ωcm when the IGZO film was deposited at RT and set up at 0.1sccm. As the oxygen vacancy rate decreased, the resistivity intended to increase. In conclusion, Oxygen vacancy affects the IGZO thin film's electrical characteristic.

  • PDF