• Title/Summary/Keyword: transparent oxide semiconductor

Search Result 138, Processing Time 0.025 seconds

MoOx/Si Heterojunction for High-Performing Photodetector (MoOx 기반 실리콘 이종접합 고성능 광검출기)

  • Park, Wang-Hee;Kim, Joondong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.11
    • /
    • pp.720-724
    • /
    • 2016
  • Transparent n-type metal-oxide semiconductor of $MoO_x$ was applied on a p-type Si substrate for high-performing heterojunction photodetector. The formation of $MoO_x$ on Si spontaneously established a rectifying current flow with a high rectification ratio of 1,252.3%. Under light illumination condition, n-type $MoO_x$/p-type Si heterojunction device provided significantly fast responses (rise time : 61.28 ms, fall time : 66.26 ms). This transparent metal-oxide layer ($MoO_x$) would provide a functional route for various photoelectric devices, including photodetectors and solar cells.

Conducting ZnO Thin Film Fabrication by UV-enhanced Atomic Layer Deposition

  • Kim, Se-Jun;Kim, Hong-Beom;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.211.1-211.1
    • /
    • 2013
  • We fabricate the conductive zinc oxide(ZnO) thin film using UV-enhanced atomic layer deposition. ZnO is semiconductor with a wide band gap(3.37eV) and transparent in the visible region. ZnO can be deposited with various method, such as metal organic chemical vapour deposition, magnetron sputtering and pulsed laser ablation deposition. In this experiment, ZnO thin films was deposited by atomic layer deposition using diethylzinc (DEZ) and D.I water as precursors with UV irradiation during water dosing. As a function of UV exposure time, the resistivity of ZnO thin films decreased dramatically. We were able to confirm that UV irradiation is one of the effective way to improve conductivity of ZnO thin film. The resistivity was investigated by 4 point probe. Additionally, we confirm the thin film composition is ZnO by X-ray photoelectron spectroscopy. We anticipate that this UV-enhanced ZnO thin film can be applied to electronics or photonic devices as transparent electrode.

  • PDF

Local structure of transparent flexible amorphous M-In-ZnO semiconductor

  • Son, L.S.;Kim, K.R.;Yang, D.S.;Lee, J.C.;Sung, N.;Lee, J.;Kang, H.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.164-164
    • /
    • 2010
  • The impurity doped ZnO has been extensively studied because of its optoelectric properties. GIZO (Ga-In-Zn-O) amorphous oxide semiconductors has been widely used as transparent flexible semiconductor material. Recently, various amorphous transparent semiconductors such as IZO (In-Zn-O), GIZO, and HIZO (Hf-In-Zn-O) were developed. In this work, we examined the local structures of IZO, GIZO, and HIZO. The local coordination structure was investigated by the extended X-ray absorption fine structure. The IZO, GIZO and HIZO thin films ware deposited on the glass substrate with thickness of 400nm by the radio frequency sputtering method. The targets were prepared by the mixture of $In_2O_3$, ZnO and $HfO_2$ powders. The percent ratio of In:Zn in IZO, Ga:In:Zn in GIZO and Hf:In:Zn in HIZO was 45:55, 33:33:33 and 10:35:55, respectively. In this work, we found that IZO, GIZO and HIZO are all amorphous and have a similar local structure. Also, we obtained the bond distances of $d_{Ga-O}=1.85\;{\AA}$, $d_{Zn-O}=1.98\;{\AA}$, $d_{Hf-O}=2.08\;{\AA}$, $d_{In-O}=2.13\;{\AA}$.

  • PDF

Fabrication of the ITO/Mesh-Ag/ITO Transparent Electrode using Ag Nano- Thin Layer with a Mesh Structure and Its Characterization (메쉬 구조의 Ag 나노박막을 이용한 ITO/Mesh-Ag/ITO 고전도성 투명전극 제조 및 특성 분석)

  • Lee, Dong Hyun;Cho, Eou Sik;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.100-104
    • /
    • 2019
  • The 'ITO/Ag/ITO' multilayers as a highly conductive and transparent electrode, even with the optimum thickness conditions, the transmittances were much lower than those of a single ITO layer on some ranges of the visible wavelength. In order to improve the transmittance, Ag layer was formed with mesh structure. Where, the thickness of the Ag layer was about 10 nm and the space between the Ag lines was varied from 2.9 ㎛ to 19.6 ㎛ with the fixed Ag width of about 1.2 ㎛ in order to vary an open ratio of the Ag mesh structure. The transmittance and sheet resistance in the ITO/Mesh-Ag/ITO multilayer structure were analyzed depending on the open ratio. As a result, a trade off in the open ratio was necessary in order to obtain the transmittance as high as possible and the sheet resistance as possible low. By the open ratio of about 86%, in the ITO/Mesh-Ag/ITO multilayer structure, the transmittance was nearly same as the single ITO layer and the sheet resistance was about 62.3 Ω/.

Analysis of Sputter-Deposited SnO thin Film with SnO/Sn Composite Target (SnO/Sn 혼합 타겟을 이용한 SnO 박막 제조 및 특성)

  • Kim, Cheol;Kim, Sungdong;Kim, Sarah Eunkyung
    • Korean Journal of Materials Research
    • /
    • v.26 no.4
    • /
    • pp.222-227
    • /
    • 2016
  • Tin oxides have been studied for various applications such as gas detecting materials, transparent electrodes, transparent devices, and solar cells. p-type SnO is a promising transparent oxide semiconductor because of its high optical transparency and excellent electrical properties. In this study, we fabricated p-type SnO thin film using rf magnetron sputtering with an SnO/Sn composite target; we examined the effects of various oxygen flow rates on the SnO thin films. We fundamentally investigated the structural, optical, and electrical properties of the p-type SnO thin films utilizing X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV/Vis spectrometry, and Hall Effect measurement. A p-type SnO thin film of $P_{O2}=3%$ was obtained with > 80% transmittance, carrier concentration of $1.12{\times}10^{18}cm^{-3}$, and mobility of $1.18cm^2V^{-1}s^{-1}$. With increasing of the oxygen partial pressure, electrical conductivity transition from p-type to n-type was observed in the SnO crystal structure.

Light Effects on the Bias Stability of Transparent ZnO Thin Film Transistors

  • Shin, Jae-Heon;Lee, Ji-Su;Hwang, Chi-Sun;KoPark, Sang-Hee;Cheong, Woo-Seok;Ryu, Min-Ki;Byun, Chun-Won;Lee, Jeong-Ik;Chu, Hye-Yong
    • ETRI Journal
    • /
    • v.31 no.1
    • /
    • pp.62-64
    • /
    • 2009
  • We report on the bias stability characteristics of transparent ZnO thin film transistors (TFTs) under visible light illumination. The transfer curve shows virtually no change under positive gate bias stress with light illumination, while it shows dramatic negative shifts under negative gate bias stress. The major mechanism of the bias stability under visible illumination of our ZnO TFTs is thought to be the charge trapping of photo-generated holes at the gate insulator and/or insulator/channel interface.

Epitaxial growth of Tin Oxide thin films deposited by powder sputtering method

  • Baek, Eun-Ha;Kim, So-Jin;Gang, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.185.2-185.2
    • /
    • 2015
  • Tin Oxide (SnO2) has been widely investigated as a transparent conducting oxide (TCO) and can be used in optoelectronic devices such as solar cell and flat-panel displays. In addition, it would be applicable to fabricating the wide bandgap semiconductor because of its bandgap of 3.6 eV. There have been concentrated on the improvement of optical properties, such as conductivity and transparency, by doping Indium Oxide and Gallium Oxide. Recently, with development of fabrication techniques, high-qulaity SnO2 epitaxial thin films have been studied and received much attention to produce the electronic devices such as sensor and light-emitting diode. In this study, powder sputtering method was employed to deposit epitaxial thin films on sapphire (0001) substrates. A commercial SnO2 powder was sputtered. The samples were prepared with varying the growth parameters such as gas environment and film thickness. Then, the samples were characterized by using XRD, SEM, AFM, and Raman spectroscopy measurements. The details of physical properties of epitaxial SnO2 thin films will be presented.

  • PDF

Transparent Conducting Zinc-Tin-Oxide Layer for Application to Blue Light Emitting-diode

  • Kim, Do-Hyeon;Kim, Gi-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.346.2-346.2
    • /
    • 2014
  • To use the GaN based light-emitting diodes (LEDs) as solid state lighting sources, the improvement of light extraction and internal quantum efficiency is essential factors for high brightness LEDs. In this study, we suggested the new materials system of a zinc tin oxide (ZTO) layer formed on blue LED epi-structures to improve the light extraction. ZTO is a representative n-type oxide material consisted of ZnO and SnO system. Moreover, ZTO is one of the promising oxide semiconductor material. Even though ZTO has higher chemical stability than IGZO owing to its SnO2 content this has high mobility and high reliability. After formation of ZTO layer on p-GaN layer by using the spin coating method, structural and optical properties are investigated. The x-ray diffraction (XRD) measurement results show the successful formation of ZTO. The photoluminescence (PL) and absorption spectrum shows that it has 3.6-4.1eV band gap. Finally, the light extraction properties of ZTO/LED chip using electroluminescence (EL) measurement were investigated. The experimental and theoretical analyses were simultaneously conducted.

  • PDF

Oxide Semiconductor Thin Film Transistor based Solution Charged Cellulose Paper Gate Dielectric using Microwave Irradiation

  • Lee, Seong-Yeong;Jo, Gwang-Won;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.207.1-207.1
    • /
    • 2015
  • 차세대 디스플레이 소자로서 TAOS TFT (transparent amorphous oxide semiconductor Thin Film Transistor)가 주목 받고 있다. 또한, 최근에는 값 비싼 전자 제품을 저렴하고 간단히 처분 할 수 있는 시스템으로 대신 하는 연구가 진행되고 있다. 그중, cellulose-fiber에 전기적 시스템을 포함시키는 e-paper에 대한 관심이 활발하다. cellulose fiber는 가볍고 깨지지 않으며 휘는 성질을 가지고 있다. 가격도 저렴하고 가공이 용이하여 차세대 기판의 재료로서 주목받고 있다. 하지만, cellulose-fiber 위에는 고온의 열처리공정과 고품질 박막 성장이 어려워서 TFT 제작에 어려움을 겪고 있다. 이러한 문제를 해결하기 위해서 산화물 반도체를 이용하여 TFT를 제작한 사례가 보고되고 있다. 또한, 채널 물질 뿐만 아니라 cellulose fiber에도 다른 물질을 첨가하거나 증착하여 전기적 화학적 특성을 개선시킨 사례도 많이 보고되고 있다. 본 연구에서는 가장 저품질의 용지로 알려진 신문지와 A4용지를 gate dielectric을 이용하여서 a-IGZO TFT를 제작하였다. 하지만, cellulose fiber로 만들어진 TFT의 경우에는 고온의 열처리가 불가능 하다. 따라서 저온에서 높을 효율은 보이는 microwave energy를 이용하여 열처리를 진행하였다. 추가적으로 저품질의 종이의 특성을 개선시키기 위해서 high-k metal-oxide solution precursor를 첨가 하여 TFT의 특성을 개선시켰다. 결과적으로 cellulose fiber에 metal-oxide solution precursor을 첨가하는 공정과 micro wave를 조사하는 방법을 사용하여 100도 이하에서 cellulose fiber를 저렴하고 우수한 성능의 TFT를 제작에 성공하였다.

  • PDF

A Study on the Dependency of Pulsed-DC Sputtered Aluminum-doped Zinc Oxide Thin Films on the Reverse Pulse Time (Pulsed-DC 스퍼터링에서 Reverse Pulse Time에 따른 AZO 박막의 특성 변화에 관한 연구)

  • Ryu, Hyungseok;Zhao, Zhenqian;Kwon, Sang Jik;Cho, Eou Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.32-36
    • /
    • 2018
  • For various oxygen($O_2$) to argon(Ar) gas ratio, aluminum-doped zinc oxide(AZO) films were deposited for 3 min at different duty ratio by changing reverse pulse times. As the duty ratio increased, the thickness of the AZO film decreased and the sheet resistance increased. It can be concluded that When sputtering AZO Thin film, oxygen interfered with sputtering. When the reverse time was increased, the thickness of AZO was proportional to the real sputtering time and decreased. From the optical transmittance and sheet resistance, it was possible to obtain a higher figure of merits of AZO at a lower reverse pulse time. Even at the short reversed pulse time, it can be concluded that the accumulated charges on the AZO target are completely cleared. At a lower reverse pulse time, pulsed-DC sputtering of AZO is expected to be used instead of DC sputtering in the deposition of transparent conductive oxide(TCO) films without any degradation in thickness and structural/electrical characteristics.