• Title/Summary/Keyword: transparent oxide semiconductor

검색결과 138건 처리시간 0.031초

수소 유량에 따른 IZO 박막의 구조적 및 전기적 특성 (Structural and Electrical Characteristics of IZO Thin Films Deposited at Different Hydrogen Flow Rate)

  • 홍경림;이규만
    • 반도체디스플레이기술학회지
    • /
    • 제18권3호
    • /
    • pp.7-11
    • /
    • 2019
  • We have investigated the effect of the hydrogen flow rate on the characteristics of IZO thin films for the TCO (transparent conducting oxide). For this purpose, IZO thin films are deposited by RF magnetron sputtering at 300℃ with various H2 flow rate. To investigate the influences of the ambient gases, the flow rate of hydrogen in argon was varied from 0.1 sccm to 1 sccm. The IZO thin films deposited at 300℃ show crystalline structure having an (222) preferential orientation. The electrical resistivity of the crystalline-IZO films deposited at 300℃ and hydrogen gas of 0.8sccm was 3.192×10-4Ω cm, the lowest value. As the hydrogen gas flow rate increased, the resistivity tended to decrease. The XPS profiles showed that the number of oxygen vacancy decreased as the hydrogen flow rate increased. The transmittance of the IZO films deposited at 300℃ were showed more than 80%.

기판온도에 따른 IGZO 박막의 구조적 및 전기적 특성 (Structural and Electrical Characteristics of IGZO thin Films deposited at Different Substrate Temperature)

  • 이민규;이규만
    • 반도체디스플레이기술학회지
    • /
    • 제15권1호
    • /
    • pp.1-5
    • /
    • 2016
  • In this study, we have investigated the effect of the substrate temperature on the characteristics of IGZO thin films for the TCO(transparent conducting oxide). For this purpose, IGZO thin films were deposited by RF magnetron sputtering at various substrate temperature (room temperature ${\sim}400^{\circ}C$). IGZO thin films deposited at room temperature show amorphous structure, whereas IGZO thin films deposited at $250^{\circ}C$ or more show crystalline structure having an (222) preferential orientation. The electrical resistivity of IGZO film increased with increasing temperature. The change of electrical resistivity with increasing temperature was mainly interpreted in terms of the charge carrier concentration rather than the charge carrier mobility. The electrical resistivity of the amorphous-IGZO films deposited at R.T. was lower than that of the crystalline-IGZO thin films deposited at $300^{\circ}C$. The transmittance of the IGZO films deposited at $300^{\circ}C$ was decreased deposited with hydrogen gas.

증착 온도 및 수소 유량에 따른 MZO 박막의 구조적 및 전기적 특성 (Structural and Electrical Characteristics of MZO Thin Films Deposited at Different Substrate Temperature and Hydrogen Flow Rate)

  • 이지수;이규만
    • 반도체디스플레이기술학회지
    • /
    • 제17권2호
    • /
    • pp.6-11
    • /
    • 2018
  • In this study, we have studied the effect of substrate temperature and hydrogen flow rate on the characteristics of MZO thin films for the TCO(Transparent conducting oxide). MZO thin films were deposited by RF magnetron sputtering at room temperature and $100^{\circ}C$ with various $H_2$ flow rate(1sccm~4sccm). In order to investigate the effect of hydrogen gas flow rate on the MZo thin film, we experimented with changing the hydrogen in argon mixing gas flow rate from 1.0sccm to 4.0sccm. MZO thin films deposited at room temperature and $100^{\circ}C$ show crystalline structure having (002), (103) preferential orientation. The electrical resistivity of the MZO films deposited at $100^{\circ}C$ was lower than that of the MZO film deposited at room temperature. The decrease of electrical resistivity with increasing substrate temperature was interpreted in terms of the increase of the charge carrier mobility and carrier concentration which seems to be due to the oxygen vacancy generated by the reducing atmosphere in the gas. The average transmittance of the MZO films deposited at room temperature and $100^{\circ}C$ with various hydrogen gas flow was more than 80%.

기판 온도와 분위기 가스에 따른 AZO 박막의 구조적 및 전기적 특성 (Effect of Substrate Temperature and Gas Flow Rate of Atmosphere Gases on Structural and Electrical Properties of AZO Thin Films)

  • 홍경림;이규만
    • 반도체디스플레이기술학회지
    • /
    • 제20권1호
    • /
    • pp.1-6
    • /
    • 2021
  • We have investigated the effect of the substrate temperature and hydrogen flow rate on the characteristics of AZO thin films for the TCO (transparent conducting oxide). For this purpose, AZO thin films were deposited by RF magnetron sputtering at room temperature and 300℃ with various H2 flow rate. Experiments were carried out while varying the hydrogen gas flow rate from 0sccm to 5.0sccm in order to see how the hydrogen gas affects the AZO thin films. AZO thin films deposited at 300℃ showed amorphous structure, whereas IZO thin films deposited at room temperature showed crystalline structure having an (222) preferential orientation. The electrical resistivity of the AZO films deposited at 300℃ was 4.388×10-3Ωcm, the lowest value. As the hydrogen gas flow rate increased, the resistivity tended to decrease.

RF 마그네트론 스퍼터링으로 증착한 비정질 InGaZnO 박막의 구조적, 광학적, 전기적 특성에 미치는 RF 파워의 영향 (Effect of RF Power on the Structural, Optical and Electrical Properties of Amorphous InGaZnO Thin Films Prepared by RF Magnetron Sputtering)

  • 신지훈;조영제;최덕균
    • 대한금속재료학회지
    • /
    • 제47권1호
    • /
    • pp.38-43
    • /
    • 2009
  • To investigate the effect of RF power on the structural, optical and electrical properties of amorphous InGaZnO (a-IGZO), its thin films and TFTs were prepared by RF magnetron sputtering method with different RF power conditions of 40, 80 and 120 W at room temperature. In this study, as RF power during the deposition process increases, the RMS roughness of a-IGZO films increased from 0.26 nm to 1.09 nm, while the optical band-gap decreased from 3.28 eV to 3.04 eV. In the case of the electrical characteristics of a-IGZO TFTs, the saturation mobility increased from $7.3cm^2/Vs$ to $17.0cm^2/Vs$, but the threshold voltage decreased from 5.9 V to 3.9 V with increasing RF power. It is regarded that the increment of RF power increases the carrier concentration of the a-IGZO semiconductor layer due to the higher generation of oxygen vacancies.

기판온도 및 수소 분위기 가스에 따른 IGZO 투명전도성박막의 구조적 및 전기적 특성 (Effect of Substrate Temperature and Hydrogen Ambient Gases on the Structural and Electrical Characteristics of IGZO Thin Films)

  • 배장호;이규만
    • 반도체디스플레이기술학회지
    • /
    • 제21권1호
    • /
    • pp.12-16
    • /
    • 2022
  • We have investigated the effect of the substrate temperature and hydrogen flow rate on the characteristics of IGZO thin films for the TCO (transparent conducting oxide). For this purpose, IGZO thin films were deposited by RF magnetron sputtering at room temperature and 300℃ with various H2 flow rate. Experiments were carried out while varying the hydrogen gas flow rate from 0sccm to 1.0sccm in order to see how the hydrogen gas affects the IGZO thin films. IGZO thin films deposited at room temperature and 300℃ showed amorphous. The lowest resistivity value was 0.379×10-5 Ωcm when the IGZO film was deposited at 300℃ and set up at 1.0sccm. As the oxygen vacancy rate increased, the resistivity intended to decrease. In conclusion, Oxygen vacancy affects the IGZO thin film's electrical characteristic.

기판온도 및 산소 분위기 가스에 따른 IGZO 투명전도성박막의 구조적 및 전기적 특성 (Effect of Substrate Temperature and Oxygen Ambient Gases on the Structural and Electrical Characteristics of IGZO Thin Films)

  • 이종현;이규만
    • 반도체디스플레이기술학회지
    • /
    • 제22권3호
    • /
    • pp.96-100
    • /
    • 2023
  • We have investigated the effect of the substrate temperature and oxygen flow rate on the characteristics of IGZO thin films for the TCO (transparent conducting oxide). For this purpose, IGZO thin films were deposited by RF magnetron sputtering at room temperature and 300℃ with various O2 flow rate. Experiments were carried out while varying the oxygen gas flow rate from 0sccm to 1.0sccm to see how the oxygen gas affects the IGZO thin films. IGZO thin films deposited at room temperature and 300℃ showed amorphous. The lowest resistivity value was 2125x10-3 Ωcm when the IGZO film was deposited at RT and set up at 0.1sccm. As the oxygen vacancy rate decreased, the resistivity intended to increase. In conclusion, Oxygen vacancy affects the IGZO thin film's electrical characteristic.

  • PDF

박막트랜지스터 효율 향상을 위한 ZnO 박막의 특성에 대한 연구

  • 박용섭;최은창;이성욱;홍병유
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.63-63
    • /
    • 2009
  • Many researchers have been studied as active and transparent electrode using ZnO (Zinc oxide) inorganic semiconductor material due to their good properties such as wide band-gap and high electrical properties compared with amorphous-Si. In this study, we fabricated ZnO films by the RF magnetron sputtering method at a low temperature for a channel layer in thin-film transistor (TFT) and investigated the characteristics of sputtered ZnO films. Also, the electrical properties of TFT using ZnO channel layer such as field effect mobility(${\mu}$), threshold voltage ($V_{th}$), and $I_{on/off}$ ratio are investigated for the application of the display and electronic devices.

  • PDF

High performance organic gate dielectrics for solution processible organic and inorganic thin-film transitors

  • 가재원;장광석;이미혜
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.64.1-64.1
    • /
    • 2012
  • Next generation displays such as high performance LCD, AMOLED, flexible display and transparent display require specific TFT back-planes. For high performance TFT back-planes, low temperature poly silicon (LTPS), and metal-oxide semiconductors are studied. Flexible TFT backplanes require low temperature processible organic semiconductors. Not only development of active semiconducting materials but also design and synthesis of semiconductor corresponding gate dielectric materials are important issues in those display back-planes. In this study, we investigate the high heat resistant polymeric gate dielectric materials for organic TFT and inorganic TFT with good insulating properties and processing chemical resistance. We also controlled and optimized surface energy and morphology of gate dielectric layers for direct printing process with solution processible organic and inorganic semiconductors.

  • PDF

LSMCD 장비를 이용 Boron 도핑 ZnO 박막제조 및 특성평가 (New Transparent Conducting B-doped ZnO Films by Liquid Source Misted Chemical Deposition Method)

  • 김길호;우성일;방정식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.307-308
    • /
    • 2008
  • Zinc oxide is a direct band gap wurtzite-type semiconductor with band gap energy of 3.37eV at room temperature. the n-type doped ZnO oxides, B doped ZnO (BZO) is widely studied in TCOs materials as it shows good electrical, optical, and luminescent properties. we focused on the fabrication of B doped ZnO films with glass substrate using the LSMCD at low temperature. And Novel boron-doped ZnO thin films were deposited and characterized from the structural, optical, electrical point of view. The structure, morphology, and optical properties of the films were studied as a function of by employing the XRD, SEM, Hall system and micro Raman system.

  • PDF