• Title/Summary/Keyword: transparent materials

Search Result 1,079, Processing Time 0.033 seconds

Characterization of Highly Conducting ZnMgBeGaO/Ag/ZnMgBeGaO Transparent Conductive Multilayer Films with UV Energy Bandgap

  • Le, Ngoc Minh;Hoang, Ba Cuong;Lee, Byung-Teak
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.695-698
    • /
    • 2017
  • ZnMgBeGaO/Ag/ZnMgBeGaO multilayer structures were sputter grown and characterized in detail. Results indicated that the electrical properties of the ZnMgBeGaO films were significantly improved by inserting an Ag layer with proper thickness (~ 10 nm). Structures with thicker Ag films showed much lower optical transmission, although the electrical conductivity was further improved. It was also observed that the electrical properties of the multilayer structure were sizably improved by annealing in vacuum (~35 % at $300^{\circ}C$). The optimum ZnMgBeGaO(20nm)/Ag(10nm)/ZnMgBeGaO(20nm) structure exhibited an electrical resistivity of ${\sim}2.6{\times}10^{-5}{\Omega}cm$ (after annealing), energy bandgap of ~3.75 eV, and optical transmittance of 65 % ~ 95 % over the visible wavelength range, representing a significant improvement in characteristics versus previously reported transparent conductive materials.

Improvement of Reliability by Using Fluorine Doped Tin Oxide Electrode for Ta2O5 Based Transparent Resistive Switching Memory Devices

  • Lee, Do Yeon;Baek, Soo Jung;Ryu, Sung Yeon;Choi, Byung Joon
    • Journal of Applied Reliability
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Purpose: Fluorine doped tin oxide (FTO) bottom electrode for $Ta_2O_5$ based RRAM was studied to apply for transparent resistive switching memory devices owing to its superior transparency, good conductivity and chemical stability. Methods: $ITO/Ta_2O_5/FTO$ (ITF) and $ITO/Ta_2O_5/Pt$ (ITP) devices were fabricated on glass and Si substrate, respectively. UV-visible (UV-VIS) spectroscopy was used to examine transparency of the ITF device and its band gap energy was determined by conventional Tauc plot. Electrical properties, such as electroforming and voltage-induced RS characteristics were measured and compared. Results: The device with an FTO bottom electrode showed good transparency (>80%), low forming voltage (~-2.5V), and reliable bipolar RS behavior. Whereas, the one with Pt electrode showed both bipolar and unipolar RS behaviors unstably with large forming voltage (~-6.5V). Conclusion: Transparent and conducting FTO can successfully realize a transparent RRAM device. It is concluded that FTO electrode may form a stable interface with $Ta_2O_5$ switching layer and plays as oxygen ion reservoir to supply oxygen vacancies, which eventually facilitates a stable operation of RRAM device.

Electrical and Optical Properties of Transparent Conducting Films having GZO/Metal/GZO Hybrid-structure; Effects of Metal Layer(Ag, Cu, Al, Zn) (GZO/Metal/GZO 하이브리드 구조 투명 전도막의 전기적, 광학적 특성; Ag, Cu, Al, Zn 금속 삽입층의 효과)

  • Kim, Hyeon-Beom;Kim, Dong-Ho;Lee, Gun-Hwan;Kim, Kang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.3
    • /
    • pp.148-153
    • /
    • 2010
  • Transparent conducting films having a hybrid structure of GZO/Metal/GZO were prepared on glass substrates by sequential deposition using DC magnetron sputtering. Silver, copper, aluminum and zinc thin films were used as the intermediate metal layers in the hybrid structure. The electrical and optical properties of hybrid transparent conducting films were investigated with varying the thickness of metal layer or GZO layers. With increasing the metal thickness, hybrid films showed a noticeable improvement of the electrical conductivity, which is mainly dependent on the electrical property of the metal layer. GZO(40 nm)/Ag(10 nm)/GZO(40 nm) film exhibits a resistivity of $5.2{\times}10^{-5}{\Omega}{\cdot}cm$ with an optical transmittance of 82.8%. For the films with Zn interlayer, only marginal reduction in the resistivity was observed. Furthermore, unlike other metals, hybrid films with Zn interlayer showed a decrease in the resistivity with increasing the GZO thickness. The optimal thickness of GZO layer for anti-reflection effect at a given thickness of metal (10 nm) was found to be critically dependent on the refractive index of the metal. In addition, x-ray diffraction analysis showed that the insertion of Ag layer resulted in the improvement of crystallinity of GZO films, which is beneficial for the electrical and optical properties of hybrid-type transparent conducting films.

Anti-Fogging, Photocatalytic and Self-Cleaning Properties of TiO2-Transparent Coating

  • Mavengere, Shielah;Kim, Jung-Sik
    • Korean Journal of Materials Research
    • /
    • v.31 no.1
    • /
    • pp.8-15
    • /
    • 2021
  • Transparent, photocatalytic, and self-cleaning TiO2 thin film is developed by TiO2 sol-gel coating on glass and polycarbonate (PC) substrates. Acetyl acetone (AcAc) suppresses the precipitation of TiO2 by forming a yellowish (complex) transparent sol-gel. XPS analysis confirms the presence of Ti2p and O1s in the thin films on glass and PC substrates. The TiO2-sol is prepared by stabilizing titanium (IV) isopropoxide (TTIP) with diethylamine and methyl alcohol. The addition of AcAcsilane coupling solution to the TiO2-sol instantaneously turns to yellowish color owing to the complexing of titanium with AcAc. The AcAc solution substantially improves the photocatalytic property of the TiO2 coating layer in MB solutions. The coated TiO2 film exhibits super hydrophilicity without and with light irradiation. The TiO2 thin film stabilized by adding 8.7 wt% AcAc shows the highest photo-degradation for methylene blue (MB) solution under UV light irradiation. Also, the optimum photocatalytic activity is obtained for the 8.7 wt% AcAc-stabilized TiO2 coating layer calcined at 450 ℃. The thin-films on glass exhibit fast self-cleaning from oleic acid contamination within 45 min of UV-light irradiation. The appropriate curing time at 140 ℃ improves the anti-fogging and thermal stability of the TiO2 film coated on PC substrate. The watermark-free PC substrate is particularly beneficial to combat fogging problems of transparent substrates.

플렉서블 디스플레이용 투명전극 제조를 위한 ITO 대체소재 연구동향

  • Kim, Seon-Ok;Choe, Su-Bin;Kim, Jong-Ung
    • Ceramist
    • /
    • v.21 no.1
    • /
    • pp.12-23
    • /
    • 2018
  • As the flexible displays have been considered as a breakthrough to make a new electronics category, transparent electrodes have also confronted with an emerging issue, i.e., they also need to be mechanically flexible. For this to be made possible, a transparent electrode capable of withstanding large amounts of strain must be developed. Indium tin oxide (ITO) has been one of the most widely adopted transparent electrodes for displays and other transparent electronics, mainly supported by its high electrical conductivity and optical transparency. However, its brittle nature has forced the display industry to search for other alternatives. Recently, advances in nano-material researches have opened the door for various transparent conductive materials, which include carbon nanotube, graphene, Ag and Cu nanowire, and printable metal grids. Here we reviewed recently-published research works introducing flexible displays, all of which are employing the novel candidates for a conducting material.

Carbon Nanotube (CNT) based Transparent Conductive Films for Display Applications (탄소나노튜브 기반 투명전도성 필름 및 이의 응용)

  • Lee, Geon-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.77-77
    • /
    • 2007
  • The development of next generation displays such as flexible display is a major challenge. Most materials and processes in current flat panel display industry cannot be transferred to flexible substrates. Typically, indium tin oxide (ITO) thin films are brittle and need to be deposited at high temperature to achieve an optimal opto-electrical property, therefore ITO films cannot be used as a flexible electrode. Up to date, many alternative materials to ITO have been proposed such as conductive polymers, nanometals, solution deposited transparent conductive oxide(TCO) and carbon nanotubes(CNTs). CNT based transparent conductive films are fabricated on glass and polymer substrates. CNT thin films exhibit a sheet resistance ($R_s$) of nearby $10^3\;{\Omega}/sq$ with a transmittance of around 80% on the visible light range, which is attributed by excellent dispersion and interaction among CNTs, solvents and polymeric binders. This talk will present the current studies, opto-electrical properties, design criteria and its applications for CNT-based transparent conductive films.

  • PDF

Characteristics of amorphous IZTO-based transparent thin film transistors (비정질 IZTO기반의 투명 박막 트렌지스터 특성)

  • Shin, Han-Jae;Lee, Keun-Young;Han, Dong-Cheul;Lee, Do-Kyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.151-151
    • /
    • 2009
  • Recently, there has been increasing interest in amorphous oxide semiconductors to find alternative materials for an amorphous silicon or organic semiconductor layer as a channel in thin film transistors(TFTs) for transparent electronic devices owing to their high mobility and low photo-sensitivity. The fabriction of amorphous oxide-based TFTs at room temperature on plastic substrates is a key technology to realize transparent flexible electronics. Amorphous oxides allows for controllable conductivity, which permits it to be used both as a transparent semiconductor or conductor, and so to be used both as active and source/drain layers in TFTs. One of the materials that is being responsible for this revolution in the electronics is indium-zinc-tin oxide(IZTO). Since this is relatively new material, it is important to study the properties of room-temperature deposited IZTO thin films and exploration in a possible integration of the material in flexible TFT devices. In this research, we deposited IZTO thin films on polyethylene naphthalate substrate at room temperature by using magnetron sputtering system and investigated their properties. Furthermore, we revealed the fabrication and characteristics of top-gate-type transparent TFTs with IZTO layers, seen in Fig. 1. The experimental results show that by varying the oxygen flow rate during deposition, it can be prepared the IZTO thin films of two-types; One a conductive film that exhibits a resistivity of $2\times10^{-4}$ ohm${\cdot}$cm; the other, semiconductor film with a resistivity of 9 ohm${\cdot}$cm. The TFT devices with IZTO layers are optically transparent in visible region and operate in enhancement mode. The threshold voltage, field effect mobility, on-off current ratio, and sub-threshold slope of the TFT are -0.5 V, $7.2\;cm^2/Vs$, $\sim10^7$ and 0.2 V/decade, respectively. These results will contribute to applications of select TFT to transparent flexible electronics.

  • PDF

Fabrication of P-type Transparent Oxide Semiconductor SrCu2O2 Thin Films by RF Magnetron Sputtering (RF 마그네트론 스퍼터링을 이용한 p 타입 투명전도 산화물 SrCu2O2 박막의 제조)

  • Seok, Hye-Won;Kim, Sei-Ki;Lee, Hyun-Seok;Lim, Tae-Young;Hwang, Jong-Hee;Choi, Duck-Kyun
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.676-680
    • /
    • 2010
  • Most TCOs such as ITO, AZO(Al-doped ZnO), FTO(F-doped $SnO_2$) etc., which have been widely used in LCD, touch panel, solar cell, and organic LEDs etc. as transparent electrode material reveal n-type conductivity. But in order to realize transparent circuit, transparent p-n junction, and introduction of transparent p-type materials are prerequisite. Additional prerequisite condition is optical transparency in visible spectral region. Oxide based materials usually have a wide optical bandgap more than ~3.0 eV. In this study, single-phase transparent semiconductor of $SrCu_2O_2$, which shows p-type conductivity, have been synthesized by 2-step solid state reaction at $950^{\circ}C$ under $N_2$ atmosphere, and single-phase $SrCu_2O_2$ thin films of p-type TCOs have been deposited by RF magnetron sputtering on alkali-free glass substrate from single-phase target at $500^{\circ}C$, 1% $H_2$/(Ar + $H_2$) atmosphere. 3% $H_2$/(Ar + $H_2$) resulted in formation of second phases. Hall measurements confirmed the p-type nature of the fabricated $SrCu_2O_2$ thin films. The electrical conductivity, mobility of carrier and carrier density $5.27{\times}10^{-2}S/cm$, $2.2cm^2$/Vs, $1.53{\times}10^{17}/cm^3$ a room temperature, respectively. Transmittance and optical band-gap of the $SrCu_2O_2$ thin films revealed 62% at 550 nm and 3.28 eV. The electrical and optical properties of the obtained $SrCu_2O_2$ thin films deposited by RF magnetron sputtering were compared with those deposited by PLD and e-beam.

Characterization of Sol-Gel Derived Antimony-doped Tin Oxide Thin Films for Transparent Conductive Oxide Application

  • Woo, Dong-Chan;Koo, Chang-Young;Ma, Hong-Chan;Lee, Hee-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.5
    • /
    • pp.241-244
    • /
    • 2012
  • Antimony doped tin oxide (ATO) thin films on glass substrate were prepared by the chemical solution deposition (CSD) method, using sol-gel solution synthesized by non-alkoxide precursors and the sol-gel route. The crystallinity and electrical properties of ATO thin films were investigated as a function of the annealing condition (both annealing environments and temperatures), and antimony (Sb) doping concentration. Electrical resistivity, carrier concentration, Hall mobility and optical transmittance of ATO thin films were improved by Sb doping up to 5~8 mol% and annealing in a low vacuum atmosphere, compared to the undoped tin oxide counterpart. 5 mol% Sb doped ATO film annealed at $550^{\circ}C$ in a low vacuum atmosphere showed the highest electrical properties, with electrical resistivity of about $8{\sim}10{\times}10^{-3}{\Omega}{\cdot}cm$, and optical transmittance of ~85% in the visible range. Our research demonstrates the feasibility of low-cost solution-processed transparent conductive oxide thin films, by controlling the appropriate doping concentration and annealing conditions.

Optical Properties of Bi2O3-ZnO-SiO2 Glass System for Transparent Dielectric (Bi2O3-ZnO-SiO2 유리계의 투명유전체 후막에서 나타난 광학특성)

  • Jun J. S.;Cha M. R.;Kim H. S.
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.670-675
    • /
    • 2004
  • Glasses in the $Bi_{2}O_3-SiO_2-ZnO$ glasses system were examined as a potential replacement for lead-oxide glass frits with low firing temperature ($500\sim600^{\circ}C$) for the dielectric layer of a plasma display panel (PDP). The glasses were evaluated for glass transition temperature($T_{g}$) and thermal expansion coefficient(${\alpha}$). After forming transparent thick films by a screen-printing method, it was evaluated for the optical properties. The transmittance of thick films fired at $500-600^{\circ}C$ showed above $80\%$, which was not dependent on the firing temperature. As a result, many pores were observed at samples fired at low temperature, while the number of pores from samples prepared at high temperature decreased and the pores size increased.