• Title/Summary/Keyword: transparent electrode film

Search Result 250, Processing Time 0.031 seconds

Fabrication of Electro-active Polymer Actuator Based on Transparent Graphene Electrode

  • Park, Yunjae;Choi, Hyonkwang;Im, Kihong;Kim, Seonpil;Jeon, Minhyon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.386.1-386.1
    • /
    • 2014
  • The ionic polymer-metal composite (IPMC), a type of electro-active polymer material, has received enormous interest in various fields such as robotics, medical sensors, artificial muscles because it has many advantages of flexibility, light weight, high displacement, and low voltage activation, compare to traditional mechanical actuators. Mostly noble metal materials such as gold or platinum were used to form the electrode of an IPMC by using electroless plating process. Furthermore, carbon-based materials, which are carbon nanotube (CNT) and reduced graphene-CNT composite, were used to alter the electrode of IPMC. To form the electrode of IPMC, we employ the synthesized graphene on copper foil by chemical vapor deposition method and use the transfer process by using a support of PET/silicone film. The properties of graphene were evaluated by Raman spectroscopy, UV/Vis spectroscopy, and 4-point probe. The structure and surface of IPMC were analyzed via field emission scanning electron microscope. The fabricated IPMC performance such as displacement and operating frequency was measured in underwater.

  • PDF

Transparent ZnO thin film transistor with long channel length of 1mm (1mm의 채널을 갖는 ZnO 투명 박막 트랜지스터)

  • Lee, Choong-Hee;Ahn, Byung-Du;Oh, Sang-Hoon;Kim, Gun-Hee;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.34-35
    • /
    • 2006
  • Transparent ZnO thin film transistor (TFT) is fabricated on the glass substrates. The device consists of a high mobility intrinsic ZnO as a semiconductor active channel, Ga doped ZnO (GZO) as an electrode, $HfO_2$ as a gate insulator. GZO and $HfO_2$ layers are prepared by using a pulsed laser deposition and intrinsic ZnO layers are fabricated by using an rf-magnetron sputtering, respectively. The transparent TFT is highly transparent (> 87 %) and exhibits n-channel, enhancement mode behavior with a field-effect mobility as large as $11.7\;cm^2/Vs$ and a drain current on-to-off ratio of about $10^5$.

  • PDF

Electrical and Optical properties of TiO2-doped ZnO Films prepared on PEN by RF-magnetron Sputtering Method (고주파 마그네트론 스퍼터링에 의해 성막된 TiO2가 도핑된 ZnO 박막의 전기적 및 광학적 특성)

  • Kim, Hwa-Min;Sohn, Sun-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.10
    • /
    • pp.837-843
    • /
    • 2009
  • $TiO_2$(2 wt.%)-doped ZnO(TZO) films with thickness from 100 nm to 500 nm were prepared on polyethylene naphthalate(PEN) substrate under various rf-power range from 40 W to 80 W. Their electrical and optical properties were investigated as a function of rf-power. We think that these properties were closely related with the crystallization and the film density of TZO films. It was also presumed that the vaporization of the water vapor and other adsorbed particles such as an organic solvents can affect the electrical properties of the conventional transparent conductive oxide(TCO) films. On the other hand, since the TZO film deposited on glass substrate at room temperature with rf-power of 80 W shows a very low resistivity of $7.5\times10^{-4}\;\Omega{\cdot}cm$ and a very excellent transmittance over an average 85% in the visible range, that is comparable to that of ITO films. Therefore, we expect that the TZO films can be used as transparent electrode for optoelectronic devices such as touch-panels, flat-panel displays, and thin-film solar cells.

Transparent Electrode Forming Technology using ESD Coating Methode (ESD 기법을 이용한 투명전도막 형성 기술)

  • Kim, Jung-Su;Kim, Dong-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.348-348
    • /
    • 2009
  • The conductive coating method is used for various industrial fields. For example, Sputtering process is used to coat ITO layer in LCD or OLED panel manufacture process and fabricate a base layer of substrate of an electric printing device. However, conventional coating processes (beam sputtering, spin coating etc.) has a problems in the industrial manufacturing process. These processes have a very high cost and critical manufacturing environment as a vacuum process. Recently, many researchers have proposed various printing process instead of conventional coating processes. In this paper, we propose an ESD printing process in ITO coating layer and apply to fabricate a conductive coating film. Furthermore, the effect of the nozzle and also the applied voltage on different configuration of the nozzle head was also studied for better understanding of the Electro Static deposition process.

  • PDF

Transparent Conducting Nanodomes for Efficient Light Management

  • Hong, Seung-Hyouk;Yun, Ju-Hyung;Park, Hyeong-Ho;Kim, Joondong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.314.1-314.1
    • /
    • 2013
  • Transparent conducting nanoscale-domes were periodically patterned on a Si substrate by nanoimprint method. Transparent conductor of indium-tin-oxide (ITO) was shaped as a nanodome, which effectively drives the incident light effectively into a light-absorber and therefore induces a substantially enhanced photo-response. An ITO nanodome is electrically isolated from the neighboring nanodomes. This structure benefits to provide a low contact between a Si substrate and a front metal electrode giving an efficient electrical path. The ITO nanodome device showed a significantly enhanced photo-response of 6010 from the value of 72.9 of a planar ITO film. The electrical and optical advantage of an ITO nanodome is suitable for various photoelectric applications.

  • PDF

Nanocarbon/silver Nanowire Hybrid Flexible Transparent Conducting Film Technology (탄소나노튜브와 은나노와이어 복합 유연투명전극 필름 기술)

  • Han, Joong Tark
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.4
    • /
    • pp.323-330
    • /
    • 2016
  • The flexible transparent conducting films (TCFs) are required to realize flexible optoelectronic devices. 1D nanomaterials such as carbon nanotubes (CNTs), metal nanowires are good candidates to replace indium tin oxide that is currently used to fabricate transparent electrode. Particularly, silver nanowires are used to produce flexible TCFs. In this review, we introduce TCF technologies based on silver nanowires/CNTs hybrid structures. CNTs can compromise drawbacks of silver nanowires for applications in high performance TCFs for optoelectronic devices.

A Electrical and Optical studies of WO3/Ag/WO3 Transparent Electrode by RF Magnetron Sputtering (RF 마그네트론 스퍼터링을 이용한 WO3/Ag/WO3 투명전극의 전기·광학적 특성 연구)

  • Kang, Dong-Soo;Lee, Boong-Joo;Kwon, Hong-Kyu;Shin, Paik-Kyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1533-1537
    • /
    • 2014
  • $WO_3/Ag/WO_3$ multilayer was researched by using RF magnetron sputtering with transparent electrode. Process gas flow ratio with $Ar/O_2$ were selected the optimum conditions at 70sccm/2sccm and $WO_3$ thin film at its conditions was appeared at transmittance about 80% in the visible light region to the average. $WO_3/Ag/WO_3$ multilayer thin films were fabricated from the same process condition which was the same gas flow ratio of Ar and $O_2$ $WO_3/Ag/WO_3$ thin films were appeared transmittance about 93% and sheet resistance about $6.41{\Omega}/{\square}$. From the SEM images, each thin films were appeared when $WO_3$ is 40nm and $O_2$ is 10nm.

Improved Electrical Properties of Indium Gallium Zinc Oxide Thin-Film Transistors by AZO/Ag/AZO Multilayer Electrode

  • No, Young-Soo;Yang, Jeong-Do;Park, Dong-Hee;Kim, Tae-Whan;Choi, Ji-Won;Choi, Won-Kook
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.105-110
    • /
    • 2013
  • We fabricated an a-IGZO thin film transistor (TFT) with AZO/Ag/AZO transparent multilayer source/drain contacts by rf magnetron sputtering. a-IGZO TFT with AZO/Ag/AZO multilayer S/D electrodes (W/L = 400/50 ${\mu}m$) showed a subs-threshold swing of 3.78 V/dec, a minimum off-current of $10^{-12}$ A, a threshold voltage of 0.41 V, a field effect mobility of $10.86cm^2/Vs$, and an on/off ratio of $9{\times}10^9$. From the ultraviolet photoemission spectroscopy, it was revealed that the enhanced electrical performance resulted from the lowering of the Schottky barrier between a-IGZO and Ag due to the insertion of an AZO layer and thus the AZO/Ag/AZO multilayer would be very appropriate for a promising S/D contact material for the fabrication of high performance TFTs.

Fabrication of Transparent Conductive Oxide-less Dye-Sensitized Solar Cells Consisting of Titanium Double Layer Electrodes (이중층 티타늄 전극으로 구성된 TCO-less 염료감응형 태양전지 제작에 관한 연구)

  • Shim, Choung-Hwan;Kim, Yun-Gi;Kim, Dong-Hyun;Lee, Hae-June;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.114-118
    • /
    • 2011
  • Dye-Sensitized Solar Cells(DSSCs) consist of a titanium dioxide($TiO_2$) nano film of the photo electrode, dye molecules on the surface of the $TiO_2$ film, an electrolyte layer and a counter electrode. But two transparent conductive oxide(TCO) substrates are estimated to be about 60[%] of the total cost of the DSSCs. Currently novel TCO-less structures have been investigated in order to reduce the cost. In this study, we suggested a TCO-less DSSCs which has titanium double layer electrodes. Titanium double layer electrodes are formed by electron-beam evaporation method. Analytical instruments such as electrochemical impedance spectroscopy, scanning electron microscope were used to evaluate the TCO-less DSSCs. As a result, the proposed structure decreases energy conversion efficiency and short-circuit current density compared with the conventional DSSCs structure with FTO glass, while internal series impedance of TCO-less DSSCs using titanium double layer electrodes decreases by 27[%]. Consequently, the fill factor is improved by 28[%] more than that of the conventional structure.

A Study of Characteristic based on Working Pressure of ITO Electrode for Display (디스플레이용 ITO 전극의 동작 압력에 따른 특성 연구)

  • Kim, Hae-Mun;Park, Hyung-Jun
    • Journal of IKEEE
    • /
    • v.20 no.4
    • /
    • pp.392-397
    • /
    • 2016
  • In this paper, Characteristics of the ITO thin film deposited were analyzed using DC magnetron sputtering in order to investigate the deposition conditions of ITO thin film for transparent electrode. The experiment conditions were atmospheric pressure from 1 to 3[mTorr] with 1 [mTorr] step, bias electric voltage ranged from 260[V] to 330[V] with 10[V] step. The transmittance, refractive index and surface and cross-sectional shape of the deposited thin film were measured with an UV.-VIS. spectrophotometer, ellipsometer and SEM. Such condition as 1~2[mTorr] and near 300[V] voltage the transmittance was over 90[%] and the refractive index more than 2. Therefore, it was confirmed that the appropriate condition for making a highly transparent conductive electrode.